Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boeing funds strategic carbon fibre recycling collaboration

26.10.2011
In desert ‘aircraft graveyards’, where retired planes often go when flight service ends, good parts are removed and sold and many materials are recycled. Increasingly popular strong, light carbon fibre composites (or carbon fibre reinforced plastics) were once too difficult to recycle, so went to landfill.

In the past decade, researchers at Nottingham led by Dr Steve Pickering have developed ways to recycle carbon fibre composites. They have worked with Boeing since 2006. Now Boeing plans to invest $1,000,000 per year in a strategic research collaboration – an inclusive partnership in which Boeing will collaborate with Nottingham in all its composites recycling activities.

Sir Roger Bone, President of Boeing UK, launched this major new collaborative investment in carbon fibre recycling research involving Boeing Commercial Airplanes and The University of Nottingham’s Faculty of Engineering when he visited Nottingham on Monday 24 October.

Click here for full story First introduced into military aircraft 30 years ago, carbon fibre composites are stronger and lighter than any other commonly available material. This helps reduce fuel consumption and carbon emissions in aircraft making modern passenger planes more efficient and cheaper to fly. Advanced composite materials comprise half the empty weight of Boeing’s new 787 Dreamliner.

“Boeing wants to be able to recycle composite materials from manufacturing operations to improve product sustainability and to develop more efficient ways of recycling aircraft retired from commercial service,” said Sir Roger Bone, President of Boeing UK Ltd.

“The ultimate aim is to insert recycled materials back into the manufacturing process, for instance on the plane in non-structural sustainable interiors applications, or in the tooling we use for manufacture. This work helps us create environmental solutions throughout the lifecycle of Boeing products.”

“Aerospace is a priority research area for this University,” said Professor Andy Long, Dean of the Faculty of Engineering, Professor of Mechanics of Materials and Director of the Institute for Aerospace Technology. “This recognises the sector’s potential for growth and our ability to deliver influential world-class research and knowledge transfer to address global issues and challenges.

“Our agreement formalizes a long-term working commitment between The University of Nottingham and Boeing. We have been working together for over six years on mutual R&D activities in aircraft recycling as well as novel applications for power electronics. We share the aims of improving environmental performance of aircraft and using materials more sustainably.

In the strategic collaboration on composites recycling Boeing will provide funding of $1,000,000 per year initially for three years, but with the intention to continue with a rolling programme. The collaboration with Boeing will further develop:

• recycling processes
• technology to process recycled fibre into new applications
• and new products using recycled materials, in collaboration with other suppliers.

Boeing was a founding member six years ago of AFRA, the Aircraft Fleet Recycling Association. AFRA is a non-profit standards-setting association for the aerospace industry. Nottingham joined two years later, and a significant part of this agreement will involve working with several other AFRA member companies on the very difficult challenge of aircraft interiors recycling.

“Through this work, Boeing and Nottingham intend to develop quality and performance standards for recycled aerospace carbon fibre,” said Bill Carberry, Project Manager of Aircraft and Composite Recycling at Boeing and Deputy Director of the Aircraft Fleet Recycling Association.

“Our research at Nottingham has been developing recycling processes for carbon fibre composites for over 10 years in projects funded by industry, UK Government and EU,” said Dr Steve Pickering. “As well as recycling processes, we are creating applications to reuse recycled material.

“With Nottingham, Boeing is a partner in the ongoing Technology Strategy Board (TSB) funded project AFRECAR (Affordable Recycled CARbon fibre). With colleagues Professor Nick Warrior and Professor Ed Lester, and industrial collaborators including Boeing, we are developing high value applications for recycled carbon fibre along with new recycling processes.”

Simon Butt | The University of Nottingham
Further information:
http://www.nottingham.ac.uk/news
http://www.nottingham.ac.uk/news/pressreleases/2011/october/strategic-collaboration-with-boeing-advances-carbon-fibre-recycling.aspx

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>