Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat Owners Can Fight with New Eco-Friendly Method

04.07.2013
A new eco-friendly method to fight the accumulation of barnacles on the hulls of boats and ships has been developed by Emiliano Pinori in cooperation with colleagues at the University of Gothenburg and the SP Technical Research Institute of Sweden in Borås.

Barnacles can be found in all marine environments and are a major problem for both small boats and large ships. Barnacles accumulate on the hulls and can reduce the fuel economy of a vessel by up to 40 per cent, increasing CO2 emissions accordingly.


Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg
Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg

Barnacles penetrate the surface
While most marine organisms that attach themselves to hulls – for example mussels and algae – can easily be scraped off, barnacles literally grow into the surface and form dense calcium deposits underneath the paint.

The most common method used to prevent fouling is to mix the paint with a poisonous substance. The poison is then released slowly from the painted hull to discourage invaders, and eventually ends up in the water to the detriment of other marine organisms. This is how for example tributyltin oxide (TBTO), a biocide used in the 1980s and 1990s, led to a global environmental disaster. TBTO was banned worldwide after it was discovered that the use was making oysters and similar animals infertile.

About 90 per cent of the anti-fouling hull paints used today are based on copper oxide, causing large amounts of copper to be released into the seas and oceans.

‘This type of environmental effect cannot be accepted in the long run,’ says Pinori.

Digging their own grave in the paint
Now Pinori has found a new method. With the new method, the paint and the poison are modified so that the poison is kept inside the paint, minimising the release of it into the water. Instead, the barnacle’s own ability to penetrate the paint is used. When the organisms attach to the surface, the poisoning begins.

‘You can say that they dig their own grave in the paint,’ says Pinori.

Zero emissions possible
The toxin used in the new type of paint is ivermectin – a molecule produced by the bacterium Streptomyces avermitilis. A good effect has been achieved with only one gram of ivermectin per litre of paint, or a concentration of only .1 per cent. The effect lasts for many years and can replace the copper currently used in hull paints. The research indicates that only very small amounts of the substance leach into the water.

‘My research shows that the small amounts that are released are unrelated to the effectiveness of the method. This means that if we can eliminate the leaching completely, the effect will not be sacrificed. Zero emissions will be our next goal. We’re looking forward to continuing the development of this method within the EU project LEAF, Low Emission Anti-Fouling. It’s a three-year project that SP has been granted together with Professor Elwing’s group at the University of Gothenburg and other international partners,’ says Pinori.

Title of the doctoral thesis: Low Biocide Emission Antifouling Based on a Novel Route of Barnacle Intoxication
Link to the thesis: http://hdl.handle.net/2077/32814
Link to the project: http://www.leaf-antifouling.eu
Supervisor: Dr. Mattias Berglin, SP Chemistry, Materials and Surfaces, Borås, and the Department of Chemistry and Molecular Biology, University of Gothenburg, and Professor Hans Elwing at the University of Gothenburg.
Contact: Emiliano Pinori, Department of Chemistry and Molecular Biology, University of Gothenburg and SP, tel.: +46 (0)705 27 56 13, emiliano.pinori@sp.se

Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>