Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat Owners Can Fight with New Eco-Friendly Method

04.07.2013
A new eco-friendly method to fight the accumulation of barnacles on the hulls of boats and ships has been developed by Emiliano Pinori in cooperation with colleagues at the University of Gothenburg and the SP Technical Research Institute of Sweden in Borås.

Barnacles can be found in all marine environments and are a major problem for both small boats and large ships. Barnacles accumulate on the hulls and can reduce the fuel economy of a vessel by up to 40 per cent, increasing CO2 emissions accordingly.


Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg
Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg

Barnacles penetrate the surface
While most marine organisms that attach themselves to hulls – for example mussels and algae – can easily be scraped off, barnacles literally grow into the surface and form dense calcium deposits underneath the paint.

The most common method used to prevent fouling is to mix the paint with a poisonous substance. The poison is then released slowly from the painted hull to discourage invaders, and eventually ends up in the water to the detriment of other marine organisms. This is how for example tributyltin oxide (TBTO), a biocide used in the 1980s and 1990s, led to a global environmental disaster. TBTO was banned worldwide after it was discovered that the use was making oysters and similar animals infertile.

About 90 per cent of the anti-fouling hull paints used today are based on copper oxide, causing large amounts of copper to be released into the seas and oceans.

‘This type of environmental effect cannot be accepted in the long run,’ says Pinori.

Digging their own grave in the paint
Now Pinori has found a new method. With the new method, the paint and the poison are modified so that the poison is kept inside the paint, minimising the release of it into the water. Instead, the barnacle’s own ability to penetrate the paint is used. When the organisms attach to the surface, the poisoning begins.

‘You can say that they dig their own grave in the paint,’ says Pinori.

Zero emissions possible
The toxin used in the new type of paint is ivermectin – a molecule produced by the bacterium Streptomyces avermitilis. A good effect has been achieved with only one gram of ivermectin per litre of paint, or a concentration of only .1 per cent. The effect lasts for many years and can replace the copper currently used in hull paints. The research indicates that only very small amounts of the substance leach into the water.

‘My research shows that the small amounts that are released are unrelated to the effectiveness of the method. This means that if we can eliminate the leaching completely, the effect will not be sacrificed. Zero emissions will be our next goal. We’re looking forward to continuing the development of this method within the EU project LEAF, Low Emission Anti-Fouling. It’s a three-year project that SP has been granted together with Professor Elwing’s group at the University of Gothenburg and other international partners,’ says Pinori.

Title of the doctoral thesis: Low Biocide Emission Antifouling Based on a Novel Route of Barnacle Intoxication
Link to the thesis: http://hdl.handle.net/2077/32814
Link to the project: http://www.leaf-antifouling.eu
Supervisor: Dr. Mattias Berglin, SP Chemistry, Materials and Surfaces, Borås, and the Department of Chemistry and Molecular Biology, University of Gothenburg, and Professor Hans Elwing at the University of Gothenburg.
Contact: Emiliano Pinori, Department of Chemistry and Molecular Biology, University of Gothenburg and SP, tel.: +46 (0)705 27 56 13, emiliano.pinori@sp.se

Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>