Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue marlin blues: Loss of dissolved oxygen in oceans squeezes billfish habitat

15.12.2011
Study focuses on oxygen minimum zones in NE Atlantic and effects on pelagic species

The science behind counting fish in the ocean to measure their abundance has never been simple. A new scientific paper in Nature Climate Change shows that expanding 'ocean dead zones' (areas of low oxygen) driven in part by climate change makes that science even more complex.


This is a blue marlin with a PSAT (Popoff Satellite Archival Transmitting) tag used to monitor horizontal and vertical habitat use in a new study in Nature Climate Change. Credit: B. Boyce www.savethefish.org

Blue marlin, other billfish and tropical tuna are high energy fish that need large amounts of dissolved oxygen. Scientists from the disciplines of oceanography and fisheries biology are sounding an alarm that the expansion of dead zones is shrinking the useable habitat for these highly valuable pelagic fish in the tropical northeast Atlantic Ocean. And as dead zones shrink habitat by depriving fish of areas with enough dissolved oxygen for them to thrive, they squeeze these species into surface waters where they are more vulnerable to fishing.

"The shrinking of habitat due to expanding hypoxic zones needs to be taken into account in scientific stock assessments and management decisions for tropical pelagic billfish and tuna," said Dr. Eric Prince, fisheries scientist and principal investigator representing NOAA's Southeast Fisheries Science Center on the project. "Without taking it into account, stock assessments could be providing false signals that stocks are healthy, when in fact they are not, thus allowing overfishing that further depletes these fish stocks and threatens the sustainability of these fisheries."

The data on blue marlin, one of the most valuable and storied fish on the planet, were collected using pop up satellite tracking devices. These devices recorded the horizontal and vertical movement of these fish. The information on fish movement was then compared to detailed oceanographic maps of the same ocean areas showing the location of low-dissolved oxygen zones. By comparing the movement of the blue marlins and the location of low-oxygen areas, the study shows that blue marlin ventured deeper when dissolved oxygen levels are higher and remain in shallower surface waters when low dissolved oxygen areas encroach on their habitat from below, squeezing them into surface waters.

"We found that the blue marlin's habitat is being compressed, while the threats from human activity are increasing. In human terms, you might describe it as if you were in a house on fire with all of the doors and windows were locked, leaving only one exit, then discovering you have a robber inside the house at the same time," said Dr. Jiangang Luo, scientist at the University of Miami's Rosenstiel School of Marine & Atmospheric Science, who processed and analyzed the popup satellite tagging data for the research team.

"Working closely with oceanographers, we are getting a much clearer picture of how climate-driven dead zones are shrinking the habitat for some of the world's most valuable fish. The alarming picture painted by this study will hopefully inform our management decisions, improving the long-term health of blue marlin and other billfish and tropical tuna fisheries in the central Atlantic," said Luo.

The oceanographic data were collected and analyzed by co-author Lothar Stramma and colleagues at the Leibniz Institute of Marine Science in Kiel, Germany.

While the new paper focuses on the tropical northeast Atlantic Ocean in the waters off West Africa, the expansion of low-oxygen zones is occurring in all tropical ocean basins and throughout the subarctic Pacific, making the compression of habitat a global issue. The problem for pelagic fishes in the tropical Atlantic is particularly acute, the authors note, because many of these fish species and the unintended catch, called bycatch, are already fully exploited or overfished.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>