Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue marlin blues: Loss of dissolved oxygen in oceans squeezes billfish habitat

15.12.2011
Study focuses on oxygen minimum zones in NE Atlantic and effects on pelagic species

The science behind counting fish in the ocean to measure their abundance has never been simple. A new scientific paper in Nature Climate Change shows that expanding 'ocean dead zones' (areas of low oxygen) driven in part by climate change makes that science even more complex.


This is a blue marlin with a PSAT (Popoff Satellite Archival Transmitting) tag used to monitor horizontal and vertical habitat use in a new study in Nature Climate Change. Credit: B. Boyce www.savethefish.org

Blue marlin, other billfish and tropical tuna are high energy fish that need large amounts of dissolved oxygen. Scientists from the disciplines of oceanography and fisheries biology are sounding an alarm that the expansion of dead zones is shrinking the useable habitat for these highly valuable pelagic fish in the tropical northeast Atlantic Ocean. And as dead zones shrink habitat by depriving fish of areas with enough dissolved oxygen for them to thrive, they squeeze these species into surface waters where they are more vulnerable to fishing.

"The shrinking of habitat due to expanding hypoxic zones needs to be taken into account in scientific stock assessments and management decisions for tropical pelagic billfish and tuna," said Dr. Eric Prince, fisheries scientist and principal investigator representing NOAA's Southeast Fisheries Science Center on the project. "Without taking it into account, stock assessments could be providing false signals that stocks are healthy, when in fact they are not, thus allowing overfishing that further depletes these fish stocks and threatens the sustainability of these fisheries."

The data on blue marlin, one of the most valuable and storied fish on the planet, were collected using pop up satellite tracking devices. These devices recorded the horizontal and vertical movement of these fish. The information on fish movement was then compared to detailed oceanographic maps of the same ocean areas showing the location of low-dissolved oxygen zones. By comparing the movement of the blue marlins and the location of low-oxygen areas, the study shows that blue marlin ventured deeper when dissolved oxygen levels are higher and remain in shallower surface waters when low dissolved oxygen areas encroach on their habitat from below, squeezing them into surface waters.

"We found that the blue marlin's habitat is being compressed, while the threats from human activity are increasing. In human terms, you might describe it as if you were in a house on fire with all of the doors and windows were locked, leaving only one exit, then discovering you have a robber inside the house at the same time," said Dr. Jiangang Luo, scientist at the University of Miami's Rosenstiel School of Marine & Atmospheric Science, who processed and analyzed the popup satellite tagging data for the research team.

"Working closely with oceanographers, we are getting a much clearer picture of how climate-driven dead zones are shrinking the habitat for some of the world's most valuable fish. The alarming picture painted by this study will hopefully inform our management decisions, improving the long-term health of blue marlin and other billfish and tropical tuna fisheries in the central Atlantic," said Luo.

The oceanographic data were collected and analyzed by co-author Lothar Stramma and colleagues at the Leibniz Institute of Marine Science in Kiel, Germany.

While the new paper focuses on the tropical northeast Atlantic Ocean in the waters off West Africa, the expansion of low-oxygen zones is occurring in all tropical ocean basins and throughout the subarctic Pacific, making the compression of habitat a global issue. The problem for pelagic fishes in the tropical Atlantic is particularly acute, the authors note, because many of these fish species and the unintended catch, called bycatch, are already fully exploited or overfished.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>