Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue light culprit in red tide blooms

24.02.2012
Each year, phytoplankton blooms known as "red tides" kill millions of fish and other marine organisms and blanket vast areas of coastal water around the world.

Though the precise causes of red tides remain a mystery, a team of researchers in the United States and Spain has solved one of the main riddles about these ecological disasters by uncovering the specific mechanism that triggers phytoplankton to release their powerful toxins into the environment.

"Previous theories about how phytoplankton release toxins proposed a rather awkward, untested 'exudation' mechanism," said researcher Pedro Verdugo of the University of Washington in Friday Harbor. "The true mechanism has been a very exciting riddle to crack and it provides a handle on understanding the development of huge phytoplankton blooms, eventually affecting several square miles of the ocean's upper surface."

Verdugo and his colleagues, Kellie L. Vigna also of the University of Washington and Ivan Quesada of the Universidad Miguel Hernandez in Alicante, Spain, will present their research at the 56th Annual Meeting of the Biophysical Society (BPS), held Feb. 25-29 in San Diego, Calif.

Red tides appear when naturally occurring algae – including Karenia brevis – multiply very rapidly, becoming so concentrated that the ocean surface takes on a reddish hue. Karenia produces brevetoxin, a powerful neurotoxin that binds to nerve and muscle cells, leading to substantial marine life mortality and human morbidity. The blooms are triggered by some as yet unknown fluctuations in ocean temperature, salinity, and available nutrients.

The researchers discovered that Karenia and other unicellular microalgae function very much like the secretory cells we have in our bodies. Namely, they store inside membrane-lined microscopic vesicles their active chemicals – such as hormones, antibacterial products, and, in Karenia's case, toxins. When properly stimulated, these cells release their cargo by a process known as exocytosis.

Secretory cells store high concentrations of active chemicals in their vesicles by "caging" them in a gel matrix, as Verdugo's lab discovered more than a decade ago. This trick offers a clever thermodynamic advantage as storage across membrane-lined vesicles would otherwise require large amounts of osmotic work. According to the researchers, these microscopic gels found inside virtually all secretory vesicles remain in a condensed gel phase – with their cargo virtually immobilized – until they are released from the cell, when they undergo drastic swelling and release their payload. "Swelling results from a polymer gel phase transition, a characteristic property of both natural and synthetic polymer gels, which has been further applied in our lab to engineer high payload drug delivery vesicles," said Verdugo.

The cargo in phytoplankton vesicles are toxins. They are caged in a gel matrix made up of a biopolymer very similar to alginate, one of the constituents of algae cell walls. The researchers discovered that phytoplankton release their toxin-loaded gels when exposed to sunlight, particularly the blue portion of the spectrum.

"We do not know why phytoplankton respond to blue light, but it might be associated with the fact that blue light penetrates deeper in seawater," said Verdugo. "Often, plants and animals release toxins as a defense mechanism. Whether this is the case in phytoplankton remains speculative. However, blue light stimulation implies that these cells must have a photoreceptor – most likely associated with the cell structures known as chloroplasts, which are responsible for photosynthesis. This is in fact one of the riddles we'll tackle next."

These observations support the notion that Karenia brevis functions as a typical secretory cell, which the researchers believe opens the way to a better understanding of red tide bloom dynamics.

The presentation, "Exocytic mechanisms of storage and release of brevotoxin in the dinoflagellate Karenia brevis," is at 1:45 p.m. on Monday, Feb. 27, 2012, in the San Diego Convention Center, Hall FGH. ABSTRACT: http://tinyurl.com/6nuttzl

This news release was prepared for the Biophysical Society (BPS) by the American Institute of Physics (AIP).
ABOUT THE 2012 ANNUAL MEETING

Each year, the Biophysical Society Annual Meeting brings together over 6,000 research scientists in the multidisciplinary fields representing biophysics. With more than 4,000 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup meetings, platform sessions, social activities, and committee programs.

The 56th Annual Meeting will be held at the San Diego Convention Center (111 W. Harbor Drive, San Diego, CA 92101), located three miles from the San Diego International Airport and less than one mile from the Amtrak station. The San Diego Trolley has two stops directly in front of the Center at Harbor Drive/First Avenue and Harbor Drive/Fifth Avenue.

QUICK LINKS

Meeting Home Page: http://www.biophysics.org/2012meeting/Main/tabid/2386/Default.aspx

Housing and Travel Information: http://www.biophysics.org/2012meeting/AccommodationsTravel/HotelInformation/tabid/2479/Default.aspx

Program Abstracts and Itinerary Planner: http://www.abstractsonline.com/plan/start.aspx?mkey=%7B5B4BAD87%2D5B6D%2D4994%2D84CE%2DB3B13E2AEAA3%7D

PRESS REGISTRATION

The Biophysical Society invites credentialed journalists, freelance reporters working on assignment, and public information officers to attend its Annual Meeting free of charge. For more information on registering as a member of the press, contact Ellen Weiss, Director of Public Affairs and Communications (eweiss@biophysics.org, 240-290-5606), or visit http://www.biophysics.org/2012meeting/Registration/Press/tabid/2477/Default.aspx
ABOUT BPS

The Biophysical Society (BPS), founded in 1956, is a professional scientific society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the Society or the 2012 Annual Meeting, visit www.biophysics.org.

Ellen R. Weiss | EurekAlert!
Further information:
http://www.biophysics.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>