Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue crab research may help Chesapeake Bay watermen improve soft shell harvest

25.01.2011
Genome-based technique helps identify a virus lethal to blue crab

A research effort designed to prevent the introduction of viruses to blue crabs in a research hatchery could end up helping Chesapeake Bay watermen improve their bottom line by reducing the number of soft shell crabs perishing before reaching the market.

The findings, published in the journal Diseases of Aquatic Organisms, shows that the transmission of a crab-specific virus in diseased and dying crabs likely occurs after the pre-molt (or 'peeler') crabs are removed from the wild and placed in soft-shell production facilities.

Crab mortality in soft shell production facilities is common, where it is typical for a quarter of all crabs to perish. Scientists attribute this high loss to the pressures crabs face as they are harvested, handled and placed in the facilities. When combined with the large number of animals living in a confined area, the potential for infectious diseases to spread among the crabs increases.

The team, led by University of Maryland Center for Environmental Science (UMCES) researchers, developed an innovative way to identify this crab virus solely by isolating its genetic material. Local watermen working in the soft-shell industry provided crabs to the Baltimore-based Institute of Marine and Environmental Technology (IMET) for examination.

In the laboratory, the researchers investigated the possible role of viruses in the soft shell crab's mortality by exploiting the unique physicochemical properties of the virus genome, which consists of double stranded RNA (distinct from the double stranded DNA that makes up crab and human genomes). They first extracted nucleic acids from potentially infected crabs then enriched virus genomes, allowing them to more easily find the virus. Once identified by its genome, the reo-like virus was later visualized by microscopy by collaborators at the NOAA Oxford lab.

"The molecular tools we developed during this study allow us to rapidly quantify prevalence of the blue crab reo-like virus in captive and wild crabs," said UMCES@IMET scientist Dr. Eric Schott. "The research shows that the virus was present in more than half of the dead or dying soft shell crabs we examined, but in fewer than five percent of healthy crabs."

"This new information opens the door to identifying the exact practices that help crab diseases spread," adds Schott. "That knowledge will allow us to work with watermen to develop new ways to prevent the spread of the virus, allowing them to bring more soft shells to market."

"Crab for crab, each soft shell crab we can get to market significantly increases our bottom line," said Lee Carrion of Coveside Crabs in Dundalk, Maryland. "With soft shells selling for five times the price of a hard shells, we have the potential to improve our profitability without increasing our total catch."

Throughout their research, scientists worked with watermen from Coveside Crabs to gather and collect samples for the study. Thanks to funding from the Maryland Department of Natural Resources, the team plans to continue the project this summer in an effort to proactively identify crabs carrying the virus, which poses no threat to humans, before they are brought into the soft shell production facility.

The article, "Physicochemical properties of double-stranded RNA used to discover a reo-like virus from blue crab Callinectes sapidus" appears in volume 93 of Diseases of Aquatic Organisms. In addition to Dr. Schott, UMCES researchers Drs. Holly Bowers and Rosemary Jagus, and University of Maryland graduate student Ammar Hanif contributed to this work. This research was supported by the National Oceanic and Atmospheric Administration and the Maryland Sea Grant College. Student support was provided by NOAA's Living Marine Resources Cooperative Science Center.

The University of Maryland Center for Environmental Science is the University System of Maryland's environmental research institution. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through five research centers – Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, Horn Point Laboratory in Cambridge, Institute of Marine and Environmental Technology in Baltimore, and the Maryland Sea Grant College in College Park.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>