Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird Populations Near Fukushima Are More Diminished Than Expected

10.02.2012
Low-level radiation in Fukushima Prefecture appears to have had immediate effects on bird populations, and to a greater degree than was expected from a related analysis of Chernobyl, an international team of scientists reported today in Environmental Pollution.

In July 2011, the researchers identified and counted birds at 300 locations in Fukushima Prefecture, ranging from 15 to 30 miles from the damaged nuclear complex. Largely still open to human occupation, these areas had external radiation levels from 0.5 to 35 microsieverts per hour.

Overall, the bird community as a whole was significantly diminished in the more contaminated areas.

Moreover, the team compared the results to a similar study they undertook in the Chernobyl Exclusion Zone from 2006 through 2009. For 14 species of birds found in both locations, the diminution of population size from increased radiation dose was more pronounced at Fukushima than Chernobyl.

According to co-author Timothy Mousseau, a biologist in the University of South Carolina's College of Arts and Sciences, this suggests that "these birds, which have never experienced radiation of this intensity before, may be especially sensitive to radioactive contaminants."

However, when comparing all birds, including the species that are not common to both areas, the overall strength of the negative relationship was stronger in Chernobyl than in Fukushima. The authors believe that this may reflect the fact that many species in the most contaminated regions of Chernobyl have now almost completely disappeared.

The study, among the first published scientific reports concerning impacts on terrestrial animal populations in Fukushima, suggests that there are many similarities between the Chernobyl and Fukushima events and provides new insight into the first-generation effects of radiation exposure on animals in the wild. "Our results point to the need for more research to determine the underlying reasons for differences among species in sensitivity, both initially and following many generations of exposure," said Mousseau.

Although these early data are critical for setting a baseline, Mousseau added that it's imperative that "large-scale studies be initiated in Fukushima immediately to make the research potentially much more revealing."

The research was co-sponsored by QIAGEN GmbH, The Samuel Freeman Charitable Trust, the CNRS (France), and the University of South Carolina.

http://dx.doi.org/10.1016/j.envpol.2012.01.008

Steven Powell | Newswise Science News
Further information:
http://www.sc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

No gene is an island

25.07.2017 | Life Sciences

Flexible proximity sensor creates smart surfaces

25.07.2017 | Materials Sciences

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>