Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotechnology for sustainable water supply in Africa

01.12.2011
European-funded project targets sustainable water supply in Africa and other developing countries. Using biotechnology is seen as a simple and cost-efficient approach.

“Wastewater treatment is a socioeconomic issue rather than a purely technical one. Using biotechnology for this purpose will provide communities with a safe and healthy water supply and thus better quality of life. Local involvement is essential for success” says Sana Arousse, Project Manager responsible for WATERBIOTECH at ttz Bremerhaven.

The fundamental principle of the WATERBIOTECH project is to treat wastewater by means of biotechnology for reuse. The approach aims at compensating water scarcity and reducing the overexploitation of freshwater resources and will thus ensure a sustainable water supply for developing countries in Africa.

Although climate change is observable across the globe, its negative impacts are most obvious in Africa. Indeed, the continent is facing a variety of problems, whereby the most important and urgent ones to tackle are water scarcity, famine and disease. In addition, limited natural and financial resources as well as economic difficulties complicate the process of improving wastewater treatment techniques. The treatment of polluted waste water and its reuse is more or less the only way for African countries to avoid the exhaustion of limited water resources and to deal with water scarcity. Most developing countries cannot afford the majority of advanced and specialized systems used for the treatment and purification of wastewater. As a consequence, wastewater is inefficiently treated and therefore still contains pathogenic organisms, xenobiotics and heavy metals after treatment. Inefficiently treated wastewater is not only environmentally unfriendly and contaminates the groundwater, which is considered to be as precious as oil in this almost desertified continent, but additionally and more importantly endangers human health.

In the course of the WATERBIOTECH project, a consortium comprising 17 partners (8 European, 7 African, 1 from the Middle East and 1 international) is developing a practical approach using biotechnology as an affordable, cost-effective, efficient and environmentally friendly method for wastewater treatment in Africa. Sana Arousse, WATERBIOTECH Project Manager, defines biotechnological methods as “all the techniques that are governed by plants or micro-organisms which can detoxify contaminants in water, soils, sediment, and sludge.” Based on this principle, WATERBIOTECH combines traditional wastewater treatment techniques with more modern ones such as stabilization pond technology, maturation ponds, constructed wetlands, sequenching batch reactors, membrane technology, bio-desalination, or trickling filter. The advantage is that all these techniques are easily adaptable to local conditions and resources in developing African countries.

The target countries of the project are Algeria, Burkina Faso, Egypt, Ethiopia, Morocco, Senegal, South Africa, Tunisia, Ghana and Saudi Arabia.

ttz Bremerhaven is a provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de/

More articles from Ecology, The Environment and Conservation:

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>