Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotechnology for sustainable water supply in Africa

01.12.2011
European-funded project targets sustainable water supply in Africa and other developing countries. Using biotechnology is seen as a simple and cost-efficient approach.

“Wastewater treatment is a socioeconomic issue rather than a purely technical one. Using biotechnology for this purpose will provide communities with a safe and healthy water supply and thus better quality of life. Local involvement is essential for success” says Sana Arousse, Project Manager responsible for WATERBIOTECH at ttz Bremerhaven.

The fundamental principle of the WATERBIOTECH project is to treat wastewater by means of biotechnology for reuse. The approach aims at compensating water scarcity and reducing the overexploitation of freshwater resources and will thus ensure a sustainable water supply for developing countries in Africa.

Although climate change is observable across the globe, its negative impacts are most obvious in Africa. Indeed, the continent is facing a variety of problems, whereby the most important and urgent ones to tackle are water scarcity, famine and disease. In addition, limited natural and financial resources as well as economic difficulties complicate the process of improving wastewater treatment techniques. The treatment of polluted waste water and its reuse is more or less the only way for African countries to avoid the exhaustion of limited water resources and to deal with water scarcity. Most developing countries cannot afford the majority of advanced and specialized systems used for the treatment and purification of wastewater. As a consequence, wastewater is inefficiently treated and therefore still contains pathogenic organisms, xenobiotics and heavy metals after treatment. Inefficiently treated wastewater is not only environmentally unfriendly and contaminates the groundwater, which is considered to be as precious as oil in this almost desertified continent, but additionally and more importantly endangers human health.

In the course of the WATERBIOTECH project, a consortium comprising 17 partners (8 European, 7 African, 1 from the Middle East and 1 international) is developing a practical approach using biotechnology as an affordable, cost-effective, efficient and environmentally friendly method for wastewater treatment in Africa. Sana Arousse, WATERBIOTECH Project Manager, defines biotechnological methods as “all the techniques that are governed by plants or micro-organisms which can detoxify contaminants in water, soils, sediment, and sludge.” Based on this principle, WATERBIOTECH combines traditional wastewater treatment techniques with more modern ones such as stabilization pond technology, maturation ponds, constructed wetlands, sequenching batch reactors, membrane technology, bio-desalination, or trickling filter. The advantage is that all these techniques are easily adaptable to local conditions and resources in developing African countries.

The target countries of the project are Algeria, Burkina Faso, Egypt, Ethiopia, Morocco, Senegal, South Africa, Tunisia, Ghana and Saudi Arabia.

ttz Bremerhaven is a provider of research services and performs application-based research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Christian Colmer | idw
Further information:
http://www.ttz-bremerhaven.de/

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>