Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists record increasing amounts of plastic litter in the Arctic deep sea

23.10.2012
Studies confirm that twice as much marine debris is lying on the seabed today compared to ten years ago

The seabed in the Arctic deep sea is increasingly strewn with litter and plastic waste. As reported in the advance online publication of the scientific journal Marine Pollution Bulletin by Dr. Melanie Bergmann, biologist and deep-sea expert at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association. The quantities of waste observed at the AWI deep-sea observatory HAUSGARTEN are even higher than those found in a deep-sea canyon near the Portuguese capital Lisbon.


Photo of plastic waste, taken by the OFOS system in the HAUSGARTEN area in July 2012
© Alfred Wegener Institute

For this study Dr. Melanie Bergmann examined some 2100 seafloor photographs taken near HAUSGARTEN, the deep-sea observatory of the Alfred Wegener Institute in the eastern Fram Strait. This is the sea route between Greenland and the Norwegian island Spitsbergen. “The study was prompted by a gut feeling. When looking through our images I got the impression that plastic bags and other litter on the seafloor were seen more frequently in photos from 2011 than in those dating back to earlier years. For this reason I decided to go systematically through all photos from 2002, 2004, 2007, 2008 and 2011,” Melanie Bergmann explains.

The deep-sea scientists from the HGF-MPG Group for Deep-Sea Ecology and Technology of the Alfred Wegener Institute regularly deploy their towed camera system OFOS (Ocean Floor Observation System) during Polarstern expeditions to the HAUSGARTEN. At the central HAUSGARTEN station it is towed at a water depth of 2500 metres, 1.5 metres above the seabed, and takes a photograph every 30 seconds. Deep-sea biologists principally use these photographs to document changes in biodiversity with respect to larger inhabitants such as sea cucumbers, sea lilies, sponges, fish and shrimps. However, for Melanie Bergmann they also provided evidence of increasing deep-sea pollution: “Waste can be seen in around one percent of the images from 2002, primarily plastic. In the images from 2011 we made the same discovery on around two percent of the footage. The quantity of waste on the sea bed has therefore doubled”, the scientist says. If we consider the time span between 2007 and 2011 the amount has even risen by an order of magnitude.

At first sight, the “two percent” result may not cause much concern. However a comparison demonstrates the true extent of the pollution in the Arctic deep sea: “The Arctic Ocean and especially its deep-sea areas have long been considered to be the most remote and secluded regions of our planet. Unfortunately, our results refute this notion at least for our observatory. The quantities observed were higher than those recorded from a deep-sea canyon not far from the industrialised Portuguese capital Lisbon,” Melanie Bergmann explains. It is also important to bear in mind that, according to recent research, more plastic waste will accumulate in deep-sea canyons than in open slope environments such as HAUSGARTEN.

Melanie Bergmann is unable to determine the origin of litter from photographs alone. However she suspects that the shrinking and thinning of the Arctic sea ice may play an important role. “The Arctic sea ice cover normally acts as a natural barrier, preventing wind blowing waste from land out onto the sea, and blocking the path of most ships. Ship traffic has increased enormously since the ice cover has been continuously shrinking and getting thinner. We are now seeing three times the number of private yachts and up to 36 times more fishing vessels in the waters surrounding Spitsbergen compared to pre-2007 times,” Melanie Bergmann says. Furthermore, litter counts made during annual clean-ups of the beaches of Spitsbergen have shown that the litter washed up there originates primarily from fisheries.

The main victims of the increasing contamination of the seafloor are the deep-sea inhabitants. “Almost 70 percent of the plastic litter that we recorded had come into some kind of contact with deep-sea organisms. For example we found plastic bags entangled in sponges, sea anemones settling on pieces of plastic or rope, cardboard and a beer bottle colonised by sea lilies," Melanie Bergmann says.

When sponges or other suspension feeders come into contact with plastic, this may cause injuries to the surface of their body. The consequence: the inhabitants of the sea bed are able to absorb fewer food particles, grow more slowly as a result, and probably reproduce less often. Breathing could also be impaired. Furthermore, plastic always contains chemical additives, which have various toxic effects. “Other studies have also revealed that plastic bags that sink to the seafloor can alter the gas exchange processes in this area. The sediment below then becomes a low oxygen zone, in which only few organisms survive,” Melanie Bergmann says. On the other hand, other animals use the waste as hard substratum to settle on. “This allows colonisation by species that previously would have found hardly any suitable substratum. This means that the waste could change the deep-sea composition of species and therefore biodiversity in the long-term,” the researcher adds.

In view of the far-reaching climate changes in the Arctic, Melanie Bergmann and colleagues want to expand their research projects on “litter in the sea”: “Until now our results from the Fram Strait merely constitute a snapshot, reflecting the observations that we were able to make with the naked eye,” the scientist explains. For example, the focus is currently moving to the question of deep-sea pollution resulting from so-called micro-plastic particles. “We took samples for the first time during the last expedition with our research ice breaker POLARSTERN to the HAUSGARTEN observatory. Our AWI colleagues from Helgoland will analyse them for micro-plastics,” says Melanie Bergmann. Micro-plastics can be ingested by marine animals including commercially harvested prawns and fish and enter the human food chain.

During this expedition Belgian mammal and bird observers also counted 32 pieces of litter floating at the water surface. The probability of researchers finding more litter on the deep ocean floor is therefore great. Melanie Bergmann: “Pieces of plastic on the deep seafloor are unlikely to degrade into micro-plastics as quickly as is the case on the North Sea coast, for example. This is due to the lack both of sunlight at a depth below 200 metres and of strong water movement. Instead it is dark and cold there. Under these conditions plastic waste can probably persist for centuries.”

Glossary:
HAUSGARTEN: HAUSGARTEN is the deep-sea observatory of the Alfred Wegener Institute in the eastern Fram Strait. It consists of 16 stations covering water depths of between 1000 and 5500 metres. Since 1999 samples were taken annually at these stations every year during the summer months. The year-round deployment of moorings and free-falling systems that act as observation platforms on the seabed enables seasonal measurements. A remotely controlled underwater vehicle (Remotely Operated Vehicle, ROV) takes targeted samples, positions and services automatic measuring instruments and conducts experiments in situ on a regular basis. HAUSGARTEN is one of the key regions in the European Network of Excellence ESONET (European Seas Observatory Network) and is a member of the German Long Term Ecological Research Network (LTER-D).

Microplastic particles: microplastic particles denote microscopically small plastic particles that are created when plastic waste breaks down into ever smaller fragments during the course of chemical and physical aging processes. Due to their size, microplastics pose a risk of being eaten by small shrimps, fish larvae and other organisms at the bottom of the food chain. For example microplastics have already been found in the stomachs of commercially fished Norwegian lobster. In addition to the pure physical damage, the absorption and concentration of pollutants from the microplastic particles is to be anticipated. No studies have so far looked into the effect of this on the individual organism and on other components of the food chain, however negative consequences are to be feared.

Notes for Editors

The original article is entitled: Melanie Bergmann / Michael Klages (2012): Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, available online at http://dx.doi.org/10.1016/j.marpolbul.2012.09.018 . Printable photographic material can be found in the online version of this press release at http://www.awi.de/en/news/press_releases/. On request we will be happy to provide video sequences from HAUSGARTEN, the AWI deep-sea observatory. Further information on the HGF-MPG HGF-MPG bridging group for deep-sea ecology and technology at the Alfred Wegener Institute can be found at http://www.awi.de/en/research/deep_sea/.

Your scientific contact at the Alfred Wegener Institute is Dr. Melanie Bergmann (Tel: +49 (0)471 4831-1739, email: Melanie.Bergmann(at)awi.de). Sina Löschke from the Communications and Media Department of the Alfred Wegener Institute (Tel.: +49 (0)471 4831-2008; email: Sina.Loeschke(at)awi.de) will be happy to answer any queries.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans in the mid and higher latitudes. It coordinates polar research in Germany and makes important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic available to international research. The Alfred Wegener Institute is one of the 18 research centres in the Helmholtz Association, the largest science organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>