Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists to Determine if Rare Plant Deserves Protection

23.09.2009
First, the experts doubted it existed. Then, the federal government protected it under the Endangered Species Act. Now, that protection is in jeopardy, and the status of a rare herbaceous plant lies largely in the work of a team of biologists at Washington and Lee University.

Also known as Virginia sneezeweed, the plant stands about a meter tall and has attractive yellow clusters of flowers.

It's been a long journey for the plant Helenium virginicum, as well as for John Knox, the W&L professor emeritus of biology, and Maryanne Simurda and Paul Cabe, professors of biology.

The journey began in 1974, when Knox stumbled across a plant while doing general field work. He decided to look it up in a reference book and found it was listed as Helenium autumnale, a common plant found all over North America. End of the mystery, he thought. Then he noticed a footnote that said a similar plant was a suspected new species found only in Rockingham and Augusta counties in Virginia, and nowhere else in the world.

"This was in the fine print," said Knox. "But it also stated that the authors of the book doubted that this plant was a distinct species, so even the best botanists in 1974 thought this was a bad hypothesis.

"I thought it was interesting and posed a taxonomic question that I had worked on years ago with fungi, so I decided to try and find the plant and test the hypothesis that this was a new species."

Knox found the putative new plant, and for the next 15 years he conducted a series of studies to determine whether Helenium virginicum, was genetically different from the more common plant, or whether the differences were environmentally-induced.

Working with W&L biology students, he gathered seeds from both plants and raised hundreds of plants in the gardens of Lexington, Va., and studied their development. He found significant differences that were genetically based, and he formed the hypothesis that the two plants had stereotypical habitats. Helenium virginicum grew in sinkhole ponds, unique wetlands that existed on the western side of the Blue Ridge mountains.

"The ponds are pretty places and it's fun and therapeutic to go back to them at all times of the year, year after year. I like to see them in different lights and at different times," said Knox.

The more common plant, Helenium autumnale, could not survive in such an environment, and grew instead along streams, rivers and lakes. "The environmental conditions for the two plants were very different," he explained, "and so we found really strong evidence that this was a new species."

But it wasn't quite enough to convince the U.S. Fish and Wildlife Service. They wanted DNA evidence that the two species of plant were different. So Maryanne Simurda, W&L professor of biology, and an immunologist and molecular geneticist, agreed to sequence the DNA in the two plants to compare them. The results showed even larger differences between the two species.

In 1998, the work at W&L persuaded the federal government to declare Helenium virginicum a new protected species.

But then in 1989, David Marshall, then one of Knox's students at W&L, and now a postdoctoral research associate of evolutionary biology at the University of Connecticut, found a dry museum specimen from Missouri that looked very similar to Helenium virginicum.

Knox drove out to the Ozark Mountains of Missouri, collected more seeds and brought them back to W&L to make comparisons. "This population of the plant had been found in the 1950s, but no one had made the connection with Helenium virginicum," said Knox.

"Finding this population of the plant in Missouri was the most exciting time for me," he added. "I was particularly pleased that my student was involved. He's also collaborated with us on other projects."

After many more rigorous garden studies, Knox formed the hypothesis that this was indeed Helenium virginicum. Again, the U.S. Fish and Wildlife Service wanted DNA evidence, and again Simurda obliged, confirming the hypothesis.

Immediately after the species had become federally protected in 1999, conservation biologists in Missouri searched for and found a cluster of 39 more populations of possible Helenium virginicum.

So now, after all these years, the work begins again. Knox said he relishes the challenge and, newly retired in 2009 after 33 years at W&L, "I'm not really retired at all," he said. The U.S. Fish and Wildlife Service and the Virginia Department of Agriculture and Consumer Services have funded the W&L team to sequence the DNA of the new Missouri plants to determine if they really are Helenium virginicum and to quantify the extent of genetic variation within the species.

The results will help determine whether Helenium virginicum retains its protected status.

"The public will say there are two acres with tens of thousands of Virginia sneezeweed, so this plant is saved," said Knox. "But, if we drain a sinkhole pond, and it never fills with water again, then the plants will go extinct. So I consider our work very important."

Jeffery G. Hanna | Newswise Science News
Further information:
http://www.wlu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>