Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists to Determine if Rare Plant Deserves Protection

23.09.2009
First, the experts doubted it existed. Then, the federal government protected it under the Endangered Species Act. Now, that protection is in jeopardy, and the status of a rare herbaceous plant lies largely in the work of a team of biologists at Washington and Lee University.

Also known as Virginia sneezeweed, the plant stands about a meter tall and has attractive yellow clusters of flowers.

It's been a long journey for the plant Helenium virginicum, as well as for John Knox, the W&L professor emeritus of biology, and Maryanne Simurda and Paul Cabe, professors of biology.

The journey began in 1974, when Knox stumbled across a plant while doing general field work. He decided to look it up in a reference book and found it was listed as Helenium autumnale, a common plant found all over North America. End of the mystery, he thought. Then he noticed a footnote that said a similar plant was a suspected new species found only in Rockingham and Augusta counties in Virginia, and nowhere else in the world.

"This was in the fine print," said Knox. "But it also stated that the authors of the book doubted that this plant was a distinct species, so even the best botanists in 1974 thought this was a bad hypothesis.

"I thought it was interesting and posed a taxonomic question that I had worked on years ago with fungi, so I decided to try and find the plant and test the hypothesis that this was a new species."

Knox found the putative new plant, and for the next 15 years he conducted a series of studies to determine whether Helenium virginicum, was genetically different from the more common plant, or whether the differences were environmentally-induced.

Working with W&L biology students, he gathered seeds from both plants and raised hundreds of plants in the gardens of Lexington, Va., and studied their development. He found significant differences that were genetically based, and he formed the hypothesis that the two plants had stereotypical habitats. Helenium virginicum grew in sinkhole ponds, unique wetlands that existed on the western side of the Blue Ridge mountains.

"The ponds are pretty places and it's fun and therapeutic to go back to them at all times of the year, year after year. I like to see them in different lights and at different times," said Knox.

The more common plant, Helenium autumnale, could not survive in such an environment, and grew instead along streams, rivers and lakes. "The environmental conditions for the two plants were very different," he explained, "and so we found really strong evidence that this was a new species."

But it wasn't quite enough to convince the U.S. Fish and Wildlife Service. They wanted DNA evidence that the two species of plant were different. So Maryanne Simurda, W&L professor of biology, and an immunologist and molecular geneticist, agreed to sequence the DNA in the two plants to compare them. The results showed even larger differences between the two species.

In 1998, the work at W&L persuaded the federal government to declare Helenium virginicum a new protected species.

But then in 1989, David Marshall, then one of Knox's students at W&L, and now a postdoctoral research associate of evolutionary biology at the University of Connecticut, found a dry museum specimen from Missouri that looked very similar to Helenium virginicum.

Knox drove out to the Ozark Mountains of Missouri, collected more seeds and brought them back to W&L to make comparisons. "This population of the plant had been found in the 1950s, but no one had made the connection with Helenium virginicum," said Knox.

"Finding this population of the plant in Missouri was the most exciting time for me," he added. "I was particularly pleased that my student was involved. He's also collaborated with us on other projects."

After many more rigorous garden studies, Knox formed the hypothesis that this was indeed Helenium virginicum. Again, the U.S. Fish and Wildlife Service wanted DNA evidence, and again Simurda obliged, confirming the hypothesis.

Immediately after the species had become federally protected in 1999, conservation biologists in Missouri searched for and found a cluster of 39 more populations of possible Helenium virginicum.

So now, after all these years, the work begins again. Knox said he relishes the challenge and, newly retired in 2009 after 33 years at W&L, "I'm not really retired at all," he said. The U.S. Fish and Wildlife Service and the Virginia Department of Agriculture and Consumer Services have funded the W&L team to sequence the DNA of the new Missouri plants to determine if they really are Helenium virginicum and to quantify the extent of genetic variation within the species.

The results will help determine whether Helenium virginicum retains its protected status.

"The public will say there are two acres with tens of thousands of Virginia sneezeweed, so this plant is saved," said Knox. "But, if we drain a sinkhole pond, and it never fills with water again, then the plants will go extinct. So I consider our work very important."

Jeffery G. Hanna | Newswise Science News
Further information:
http://www.wlu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>