Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity does not reduce transmission of disease from animals to humans, Stanford researchers find

21.03.2013
New analysis pokes holes in widely accepted theory that connects biodiversity abundance with a reduced disease risk for humans.

More than three quarters of new, emerging or re-emerging human diseases are caused by pathogens from animals, according to the World Health Organization.


The Western fence lizard, which harbors ticks but doesn't transmit the Lyme disease bacterium, should be considered unique in any study of disease risk within its habitat, the researchers say. (Ervic Aquino / Courtesy of Stanford University)

But a widely accepted theory of risk reduction for these pathogens – one of the most important ideas in disease ecology – is likely wrong, according to a new study co-authored by Stanford Woods Institute for the Environment Senior Fellow James Holland Jones and former Woods-affiliated ecologist Dan Salkeld.

The dilution effect theorizes that disease risk for humans decreases as the variety of species in an area increases. For example, it postulates that a tick has a higher chance of infecting a human with Lyme disease if the tick has previously had few animal host options beyond white-footed mice, which are carriers of Lyme disease-causing bacteria.

If many other animal hosts had been available to the tick, the tick's likelihood of being infected and spreading that infection to a human host would go down, according to the theory.

If true, the dilution effect would mean that conservation and public health agendas could be united in a common purpose: to protect biodiversity and guard against disease risk. "However, its importance to the field or the beauty of the idea do not guarantee that it is actually scientifically correct," Jones said.

In the first study to formally assess the dilution effect, Jones, Salkeld and California Department of Public Health researcher Kerry Padgett tested the hypothesis through a meta-analysis of studies that evaluate links between host biodiversity and disease risk for disease agents that infect humans.

The analysis, published in the journal Ecology Letters, allowed the researchers to pool estimates from studies and test for any bias against publishing studies with "negative results" that contradict the dilution effect.

The analysis found "very weak support, at best" for the dilution effect. Instead, the researchers found that the links between biodiversity and disease prevalence are variable and dependent on the disease system, local ecology and probably human social context.

The role of individual host species and their interactions with other hosts, vectors and pathogens are more influential in determining local disease risk, the analysis found.

"Lyme disease biology in the Northeast is obviously going to differ in its ecology from Lyme disease in California," Salkeld said. "In the Northeast, they have longer winters and abundant tick hosts. In California, we have milder weather and lots of Western fence lizards (a favored tick host) that harbor ticks but do not transmit the Lyme disease bacterium."

So, these lizards should be considered unique in any study of disease risk within their habitat. Or, as Salked put it, "All animals are equal, but some animals are more equal than others."

Broadly advocating for the preservation of biodiversity and natural ecosystems to reduce disease risk is "an oversimplification of disease ecology and epidemiology," the study's authors write, adding that more effective control of "zoonotic diseases" (those transmitted from animals to humans) may require more detailed understanding of how pathogens are transmitted.

Specifically, Jones, Salkeld and Padgett recommend that researchers focus more on how disease risk relates to species characteristics and ecological mechanisms. They also urge scientists to report data on both prevalence and density of infection in host animals, and to better establish specific causal links between measures of disease risk (such as infection rates in host animals) and rates of infection in local human populations.

For their meta-analysis, the researchers were able to find only 13 published studies and three unpublished data sets examining relationships between biodiversity and animal-to-human disease risk. This kind of investigation is "still in its infancy," the authors note. "Given the limited data available, conclusions regarding the biodiversity-disease relationship should be regarded with caution."

Still, Jones said, "I am very confident in saying that real progress in this field will come from understanding ecological mechanisms. We need to turn to elucidating these rather than wasting time arguing that simple species richness will always save the day for zoonotic disease risk."

Rob Jordan is the communications writer for the Stanford Woods Institute for the Environment.

Contact

James Holland Jones, Stanford Woods Institute for the Environment: cell (650) 799-7178, office (650) 723-4824, jhj1@stanford.edu

Rob Jordan, communications writer, Stanford Woods Institute for the Environment: (650) 721-1881 (office), (415) 760-8058 (mobile), rjordan@stanford.edu

James Holland Jones | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>