Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biodiversity does not reduce transmission of disease from animals to humans, Stanford researchers find

New analysis pokes holes in widely accepted theory that connects biodiversity abundance with a reduced disease risk for humans.

More than three quarters of new, emerging or re-emerging human diseases are caused by pathogens from animals, according to the World Health Organization.

The Western fence lizard, which harbors ticks but doesn't transmit the Lyme disease bacterium, should be considered unique in any study of disease risk within its habitat, the researchers say. (Ervic Aquino / Courtesy of Stanford University)

But a widely accepted theory of risk reduction for these pathogens – one of the most important ideas in disease ecology – is likely wrong, according to a new study co-authored by Stanford Woods Institute for the Environment Senior Fellow James Holland Jones and former Woods-affiliated ecologist Dan Salkeld.

The dilution effect theorizes that disease risk for humans decreases as the variety of species in an area increases. For example, it postulates that a tick has a higher chance of infecting a human with Lyme disease if the tick has previously had few animal host options beyond white-footed mice, which are carriers of Lyme disease-causing bacteria.

If many other animal hosts had been available to the tick, the tick's likelihood of being infected and spreading that infection to a human host would go down, according to the theory.

If true, the dilution effect would mean that conservation and public health agendas could be united in a common purpose: to protect biodiversity and guard against disease risk. "However, its importance to the field or the beauty of the idea do not guarantee that it is actually scientifically correct," Jones said.

In the first study to formally assess the dilution effect, Jones, Salkeld and California Department of Public Health researcher Kerry Padgett tested the hypothesis through a meta-analysis of studies that evaluate links between host biodiversity and disease risk for disease agents that infect humans.

The analysis, published in the journal Ecology Letters, allowed the researchers to pool estimates from studies and test for any bias against publishing studies with "negative results" that contradict the dilution effect.

The analysis found "very weak support, at best" for the dilution effect. Instead, the researchers found that the links between biodiversity and disease prevalence are variable and dependent on the disease system, local ecology and probably human social context.

The role of individual host species and their interactions with other hosts, vectors and pathogens are more influential in determining local disease risk, the analysis found.

"Lyme disease biology in the Northeast is obviously going to differ in its ecology from Lyme disease in California," Salkeld said. "In the Northeast, they have longer winters and abundant tick hosts. In California, we have milder weather and lots of Western fence lizards (a favored tick host) that harbor ticks but do not transmit the Lyme disease bacterium."

So, these lizards should be considered unique in any study of disease risk within their habitat. Or, as Salked put it, "All animals are equal, but some animals are more equal than others."

Broadly advocating for the preservation of biodiversity and natural ecosystems to reduce disease risk is "an oversimplification of disease ecology and epidemiology," the study's authors write, adding that more effective control of "zoonotic diseases" (those transmitted from animals to humans) may require more detailed understanding of how pathogens are transmitted.

Specifically, Jones, Salkeld and Padgett recommend that researchers focus more on how disease risk relates to species characteristics and ecological mechanisms. They also urge scientists to report data on both prevalence and density of infection in host animals, and to better establish specific causal links between measures of disease risk (such as infection rates in host animals) and rates of infection in local human populations.

For their meta-analysis, the researchers were able to find only 13 published studies and three unpublished data sets examining relationships between biodiversity and animal-to-human disease risk. This kind of investigation is "still in its infancy," the authors note. "Given the limited data available, conclusions regarding the biodiversity-disease relationship should be regarded with caution."

Still, Jones said, "I am very confident in saying that real progress in this field will come from understanding ecological mechanisms. We need to turn to elucidating these rather than wasting time arguing that simple species richness will always save the day for zoonotic disease risk."

Rob Jordan is the communications writer for the Stanford Woods Institute for the Environment.


James Holland Jones, Stanford Woods Institute for the Environment: cell (650) 799-7178, office (650) 723-4824,

Rob Jordan, communications writer, Stanford Woods Institute for the Environment: (650) 721-1881 (office), (415) 760-8058 (mobile),

James Holland Jones | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>