Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity enhances ecosystems global drylands --
Ben-Gurion U researchers

31.01.2012
Study suggests that plant biodiversity buffers negative climate change effects and drylands desertificatio

An international team of researchers including Dr. Bertrand Boeken of the Jacob Blaustein Institutes for Desert Research at Ben-Gurion University of the Negev suggest in a new study that plant biodiversity preservation is crucial to buffer negative effects of climate change and desertification in drylands.

The study titled, "Plant species richness and ecosystem multi-functionality in global drylands", published in the prestigious journal Science is the outcome of a five-year research effort involving more than 50 researchers from 30 institutions in 15 different countries, including Dr. Boeken of the BGU Jacob Blaustein Institutes for Desert Research. Dr. Boeken and Dr. Eli Zaady of the Gilat Research Center, the Volcani Institute - Agriculture Research Organization contributed research data from two long-term ecological research sites in the northern Negev.

The results of this study indicate that the ability of ecosystems in drylands worldwide to maintain multiple functions, such as carbon storage and buildup of nutrient pools (multi-functionality) is enhanced by the number of perennial plant species, mainly shrubs and dwarf-shrubs, whereas increased average annual temperature reduces this ability.

While small-scale controlled experiments have provided evidence of the positive relationship between biodiversity and multi-functionality over the years, this study is the first in explicitly evaluating such relationship among real ecosystems at a global scale.

The fieldwork of this study was carried out in 224 dryland ecosystems from all continents except Antarctica, where direct measurements of plant diversity and other biotic and abiotic features of the ecosystem were taken. To assess ecosystem multi-functionality, researchers assessed more than 2,600 soil samples for 14 ecosystem functions related to carbon, nitrogen and phosphorus cycling and storage.

The functions measured deliver some of the fundamental supporting and regulating ecosystem services (e.g. soil fertility and climate regulation), and are also used to identify the onset of desertification processes.

Drylands constitute some of the largest terrestrial biomes, collectively covering 41 percent of earth's land surface and supporting over 38 percent of the global human population. They are of paramount importance for biodiversity, host many endemic plant and animal species, and include about 20 percent of the major centers of global plant diversity and over 30 percent of the designated endemic bird areas. However, dryland ecosystems are also highly vulnerable to global environmental change and desertification. "This study provides empirical evidence on the importance of biodiversity to maintain and improve ecosystem multi-functionality in drylands.

Dr. Boeken says, "Our results also suggest that the increase in average annual temperature predicted by climate change models will reduce the ability of dryland ecosystems to perform multiple functions, which are crucial to support life on earth. Plant biodiversity enhances this ability, therefore, maintaining and restoring it can contribute to mitigating the negative consequences of global warming and to promoting the resistance of natural ecosystems to desertification."

American Associates, Ben-Gurion University of the Negev

American Associates, Ben-Gurion University of the Negev plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With some 20,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. For more information, please visit http://www.aabgu.org

Andrew Lavin | EurekAlert!
Further information:
http://www.aabgu.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>