Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biocontrol Insect Exacerbates Invasive Weed

04.09.2008
Biocontrol agents, such as insects, are often released outside of their native ranges to control invasive plants.

But scientists in Montana have found that through complex community interactions among deer mice, native plants and seeds, the presence of an introduced fly may exacerbate the effects of the invasive plant it was meant to control. The authors report their results in the September issue of the journal Ecological Applications.

Spotted knapweed, a flowering plant native to Eurasia, was first discovered in the United States in the late 1800s. This broad-leaved plant has an advantage over native plants because its natural enemies, including insects such as European gallflies, do not naturally exist in North America. Thought to have hitched a ride with hauls of alfalfa, knapweed is now widespread in western North America and has become a serious problem in the U.S. across Washington, Idaho, Wyoming and Montana and in Canada across Alberta and British Columbia.

As early as 1971, U.S. scientists began releasing gallflies in an effort to reduce populations of the invasive weed. Like all biocontrol agents, the gallflies were selected because of their specificity to their host plant, leaving little risk of direct harm to other plants.

Adult flies lay their eggs in the weed’s flowers, and after the larvae hatch they induce the plant to grow tissue around the insect, encasing it and isolating it from the rest of the plant.

“The woody galls wall off the fly larvae from within flower head,” says Dean Pearson, lead author on the study and a research ecologist with the U.S.D.A. Forest Service’s Rocky Mountain Research station. “The larvae then overwinter in the seed heads for about nine months. When the plant devotes all that extra energy to producing these galls, it has less energy to produce seeds.”

Scientists and managers expected that this seed deficiency would lead to limited knapweed population growth. An unanticipated side effect, however, involves the flies’ furry neighbors. At the foot of the Sapphire Mountains in western Montana, omnivorous deer mice, whose diet usually consists of native seeds and insects, have also begun to prey on the introduced gallflies.

“These mice are generalists and very effective at exploiting a new resource,” says Pearson. “They can tell which seed heads have the most larvae inside them, and that makes them very efficient.” Pearson says that an average mouse can process 1200 larvae in one night. “A super mouse could go through a whole lot more than that,” he adds.

At Pearson’s grassland study site, spotted knapweed makes up more than half of the plant ground cover. The abundance of knapweed leads to lots of gallfly larvae, which serve as a food subsidy for the mice. Pearson and his coauthor, Ragan Callaway of the University of Montana, found that this extra nourishment bolsters mouse population size, increasing the numbers of hungry mice feeding on their original source of food: the seeds of native plants. As mouse consumption of native plant seeds increases, fewer native plants survive past the seed stage.

Pearson says that this exacerbation of the invasive species’ impact has a lot to do with the effectiveness of the fly at controlling the knapweed.

“If the biocontrol agent is really effective, then it will eventually eat itself out of house and home, and the community interactions become less of an issue,” Pearson says. He points out that even if the fly decimates 80 percent of the knapweed population, the 20 percent of seeds that are left to germinate are often enough to outcompete native plants.

The authors make the case that although biocontrol agents are carefully selected for specificity to their host plants, these restrictions do not prevent them from drastically altering the community food web, which can have far-reaching repercussions. Pearson hopes that a better understanding of food web ecology will lead to more effective tools for invasion control.

“Everything’s interconnected,” says Pearson. “We need to understand the ecology. If we can understand these complexities, we can attempt to minimize the side effects and maximize the effectiveness of our tools.”

To listen to a podcast of Pearson speaking about this paper in ESA’s Field Talk podcast series, please visit http://www.esa.org/podcast. Pearson’s podcast is titled “Biocontrol Insects and the Mammals Who Love Them.”

The Ecological Society of America is the world’s largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org.

Christine Buckley | Newswise Science News
Further information:
http://www.esa.org

Further reports about: ESA Spotted knapweed gallflies insect invasive plants knapweed population

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>