Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biocontrol Insect Exacerbates Invasive Weed

Biocontrol agents, such as insects, are often released outside of their native ranges to control invasive plants.

But scientists in Montana have found that through complex community interactions among deer mice, native plants and seeds, the presence of an introduced fly may exacerbate the effects of the invasive plant it was meant to control. The authors report their results in the September issue of the journal Ecological Applications.

Spotted knapweed, a flowering plant native to Eurasia, was first discovered in the United States in the late 1800s. This broad-leaved plant has an advantage over native plants because its natural enemies, including insects such as European gallflies, do not naturally exist in North America. Thought to have hitched a ride with hauls of alfalfa, knapweed is now widespread in western North America and has become a serious problem in the U.S. across Washington, Idaho, Wyoming and Montana and in Canada across Alberta and British Columbia.

As early as 1971, U.S. scientists began releasing gallflies in an effort to reduce populations of the invasive weed. Like all biocontrol agents, the gallflies were selected because of their specificity to their host plant, leaving little risk of direct harm to other plants.

Adult flies lay their eggs in the weed’s flowers, and after the larvae hatch they induce the plant to grow tissue around the insect, encasing it and isolating it from the rest of the plant.

“The woody galls wall off the fly larvae from within flower head,” says Dean Pearson, lead author on the study and a research ecologist with the U.S.D.A. Forest Service’s Rocky Mountain Research station. “The larvae then overwinter in the seed heads for about nine months. When the plant devotes all that extra energy to producing these galls, it has less energy to produce seeds.”

Scientists and managers expected that this seed deficiency would lead to limited knapweed population growth. An unanticipated side effect, however, involves the flies’ furry neighbors. At the foot of the Sapphire Mountains in western Montana, omnivorous deer mice, whose diet usually consists of native seeds and insects, have also begun to prey on the introduced gallflies.

“These mice are generalists and very effective at exploiting a new resource,” says Pearson. “They can tell which seed heads have the most larvae inside them, and that makes them very efficient.” Pearson says that an average mouse can process 1200 larvae in one night. “A super mouse could go through a whole lot more than that,” he adds.

At Pearson’s grassland study site, spotted knapweed makes up more than half of the plant ground cover. The abundance of knapweed leads to lots of gallfly larvae, which serve as a food subsidy for the mice. Pearson and his coauthor, Ragan Callaway of the University of Montana, found that this extra nourishment bolsters mouse population size, increasing the numbers of hungry mice feeding on their original source of food: the seeds of native plants. As mouse consumption of native plant seeds increases, fewer native plants survive past the seed stage.

Pearson says that this exacerbation of the invasive species’ impact has a lot to do with the effectiveness of the fly at controlling the knapweed.

“If the biocontrol agent is really effective, then it will eventually eat itself out of house and home, and the community interactions become less of an issue,” Pearson says. He points out that even if the fly decimates 80 percent of the knapweed population, the 20 percent of seeds that are left to germinate are often enough to outcompete native plants.

The authors make the case that although biocontrol agents are carefully selected for specificity to their host plants, these restrictions do not prevent them from drastically altering the community food web, which can have far-reaching repercussions. Pearson hopes that a better understanding of food web ecology will lead to more effective tools for invasion control.

“Everything’s interconnected,” says Pearson. “We need to understand the ecology. If we can understand these complexities, we can attempt to minimize the side effects and maximize the effectiveness of our tools.”

To listen to a podcast of Pearson speaking about this paper in ESA’s Field Talk podcast series, please visit Pearson’s podcast is titled “Biocontrol Insects and the Mammals Who Love Them.”

The Ecological Society of America is the world’s largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference. Visit the ESA website at

Christine Buckley | Newswise Science News
Further information:

Further reports about: ESA Spotted knapweed gallflies insect invasive plants knapweed population

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>