Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big changes in the Sargasso Sea

24.09.2014

Over one thousand miles wide and three thousand miles long, the Sargasso Sea occupies almost two thirds of the North Atlantic Ocean. Within the sea, circling ocean currents accumulate mats of Sargassum seaweed that shelter a surprising variety of fishes, snails, crabs, and other small animals.

A recent paper by MBARI researcher Crissy Huffard and others shows that in 2011 and 2012 this animal community was much less diverse than it was in the early 1970s, when the last detailed studies were completed in this region. 


Small rafts of Sargassum seaweed like this one are a common site in the Sargasso Sea. These rafts harbor a variety of small animals. Image: Debbie Nail Meyer © 2011 MBARI

This study was based on field research led by MBARI Senior Scientist Ken Smith, using the Lone Ranger, a 78-meter (255-foot) research vessel owned and operated by the Schmidt Ocean Institute. During three cruises in 2011 and 2012, Smith’s team steamed across the Sargasso Sea and used dip nets to collect samples of Sargassum seaweed (and its associated animals) at six different locations. They then classified and counted all the animals at each site.

The researchers chose their sampling and counting methods carefully so that they could compare their results with previous surveys that had been conducted in 1972 and 1973 in the same general part of the Sargasso Sea. Amazingly, the researchers could find no other studies between 1973 and 2011 during which scientists had systematically counted the Sargassum animal communities in this area. 

When the team analyzed the data from the recent cruises, they were surprised to find that animal communities in the Sargassum rafts were significantly less diverse than those observed in the 1970s. For example, 13 species of animals in several different groups (worms, nudibranchs, crustaceans, and sea spiders) were observed in the historical samples but were missing from the recent samples.

Unfortunately, the researchers did not have enough data to determine whether the differences they observed were the result of long-term shifts in ocean conditions in the Sargasso Sea or natural variations from place-to-place, month-to-month, or year-to-year. 

The authors note that ocean conditions were much cooler than normal during February 2011 and that there were large differences in animal communities observed just six months apart, in August 2011 and February 2012. So it is possible that this area routinely sees large natural variations in the types of animals present. As Huffard put it, “If this is a long-term decline [in biodiversity], then it is a very significant one. But we don’t know if this is part of the natural variability in this community.”

Previous studies indicate that much of the seaweed that ends up in the Sargasso Sea originates in the Gulf of Mexico and is carried into the central Atlantic by the Gulf Stream and other currents. This suggests that, in addition to local ocean conditions, large-scale variations in ocean currents and conditions in the Gulf of Mexico could affect the animals in Sargassum communities.

To tease out these confounding variables, Smith and Huffard are hoping to conduct a series of follow-up expeditions to the Sargasso Sea. They plan to focus on the northern part of the Sargasso Sea, near Bermuda, where more detailed historical data are available. They are presently working on a proposal for a grant that would allow them to analyze satellite imagery and collect field samples twice a year for three years. The proposed study would show how much year-to-year variability is normal for this region. 

At first glance, the animals that live in Sargassum rafts seem isolated from the rest of the world. But, like the seaweed they live in, these animal communities have many links to larger ocean food webs. For example, Sargassum animals provide essential food for sea birds, sea turtles, and bluefin tuna—all long-distance migrators. In fact, Sargassum rafts have been designated as “essential fish habitat” by the South Atlantic Fishery Management Council. 

The world’s oceans are changing, with water temperatures and ocean acidity on the rise and oxygen concentrations on the decline. In the Sargasso Sea, as in many other locations, detecting the biological effects of these long-term trends is a formidable challenge because animal communities can vary dramatically over short time periods. This study shows that animal communities in the Sargasso Sea are definitely changing. The next step is to find out why.

###

For additional information or images relating to this news release, please contact:

Kim Fulton-Bennett
831-775-1835, kfb@mbari.org

Original journal article:
C.L. Huffard, S. von Thun, A.D. Sherman, K. Sealey and K.L. Smith, Jr. (2014) Pelagic Sargassum community change over a 40-year period: temporal and spatial variability. Marine Biology, doi10.1007/s00227-014-2539-y.

Kim Fulton-Bennett | Eurek Alert!

Further reports about: Aquarium Atlantic Bay Aquarium Research MBARI Monterey Sargasso Sea animals long-term seaweed variations

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>