Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big changes in the Sargasso Sea

24.09.2014

Over one thousand miles wide and three thousand miles long, the Sargasso Sea occupies almost two thirds of the North Atlantic Ocean. Within the sea, circling ocean currents accumulate mats of Sargassum seaweed that shelter a surprising variety of fishes, snails, crabs, and other small animals.

A recent paper by MBARI researcher Crissy Huffard and others shows that in 2011 and 2012 this animal community was much less diverse than it was in the early 1970s, when the last detailed studies were completed in this region. 


Small rafts of Sargassum seaweed like this one are a common site in the Sargasso Sea. These rafts harbor a variety of small animals. Image: Debbie Nail Meyer © 2011 MBARI

This study was based on field research led by MBARI Senior Scientist Ken Smith, using the Lone Ranger, a 78-meter (255-foot) research vessel owned and operated by the Schmidt Ocean Institute. During three cruises in 2011 and 2012, Smith’s team steamed across the Sargasso Sea and used dip nets to collect samples of Sargassum seaweed (and its associated animals) at six different locations. They then classified and counted all the animals at each site.

The researchers chose their sampling and counting methods carefully so that they could compare their results with previous surveys that had been conducted in 1972 and 1973 in the same general part of the Sargasso Sea. Amazingly, the researchers could find no other studies between 1973 and 2011 during which scientists had systematically counted the Sargassum animal communities in this area. 

When the team analyzed the data from the recent cruises, they were surprised to find that animal communities in the Sargassum rafts were significantly less diverse than those observed in the 1970s. For example, 13 species of animals in several different groups (worms, nudibranchs, crustaceans, and sea spiders) were observed in the historical samples but were missing from the recent samples.

Unfortunately, the researchers did not have enough data to determine whether the differences they observed were the result of long-term shifts in ocean conditions in the Sargasso Sea or natural variations from place-to-place, month-to-month, or year-to-year. 

The authors note that ocean conditions were much cooler than normal during February 2011 and that there were large differences in animal communities observed just six months apart, in August 2011 and February 2012. So it is possible that this area routinely sees large natural variations in the types of animals present. As Huffard put it, “If this is a long-term decline [in biodiversity], then it is a very significant one. But we don’t know if this is part of the natural variability in this community.”

Previous studies indicate that much of the seaweed that ends up in the Sargasso Sea originates in the Gulf of Mexico and is carried into the central Atlantic by the Gulf Stream and other currents. This suggests that, in addition to local ocean conditions, large-scale variations in ocean currents and conditions in the Gulf of Mexico could affect the animals in Sargassum communities.

To tease out these confounding variables, Smith and Huffard are hoping to conduct a series of follow-up expeditions to the Sargasso Sea. They plan to focus on the northern part of the Sargasso Sea, near Bermuda, where more detailed historical data are available. They are presently working on a proposal for a grant that would allow them to analyze satellite imagery and collect field samples twice a year for three years. The proposed study would show how much year-to-year variability is normal for this region. 

At first glance, the animals that live in Sargassum rafts seem isolated from the rest of the world. But, like the seaweed they live in, these animal communities have many links to larger ocean food webs. For example, Sargassum animals provide essential food for sea birds, sea turtles, and bluefin tuna—all long-distance migrators. In fact, Sargassum rafts have been designated as “essential fish habitat” by the South Atlantic Fishery Management Council. 

The world’s oceans are changing, with water temperatures and ocean acidity on the rise and oxygen concentrations on the decline. In the Sargasso Sea, as in many other locations, detecting the biological effects of these long-term trends is a formidable challenge because animal communities can vary dramatically over short time periods. This study shows that animal communities in the Sargasso Sea are definitely changing. The next step is to find out why.

###

For additional information or images relating to this news release, please contact:

Kim Fulton-Bennett
831-775-1835, kfb@mbari.org

Original journal article:
C.L. Huffard, S. von Thun, A.D. Sherman, K. Sealey and K.L. Smith, Jr. (2014) Pelagic Sargassum community change over a 40-year period: temporal and spatial variability. Marine Biology, doi10.1007/s00227-014-2539-y.

Kim Fulton-Bennett | Eurek Alert!

Further reports about: Aquarium Atlantic Bay Aquarium Research MBARI Monterey Sargasso Sea animals long-term seaweed variations

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>