Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Litter is present throughout the world’s oceans: 1,220 species affected

27.03.2017

The AWI Litterbase portal is the first to gather all published scientific data on marine litter

Where is marine litter concentrated, and which species and ecosystems does it affect? Researchers at the Alfred Wegener Institute have for the first time compiled all scientific data published on marine litter in a single, comprehensive database, now accessible from the online portal AWI Litterbase (http://www.litterbase.org).


Weltweite Verteilung von Müll und Mikroplastik in aquatischen Lebensräumen (Anzahl pro Quadratkilometer) (Status 23.03.2017). Laufend aktualisierte Grafiken gibt es unter: http://litterbase.awi.de/interaction_graph. Grafik: Alfred-Wegener-Institut / AWI-Litterbase

Here, both the distribution of litter and its interactions with organisms are presented in global maps. In addition, the regularly updated datasets are fed into graphic analyses, which show e.g. that seabirds and fish are particularly affected by litter. The latest interaction analysis shows that 34 per cent of the species monitored ingest litter, 31 per cent colonise it, and 30 per cent get entangled or otherwise trapped in it (for all figures: valid as of 23 March 2017).

The total number of affected species is rising steadily and is currently at 1,220 – more than twice the number reported in the last review article. These numbers will change as the database is being updated regularly.

“In AWI Litterbase we’ve for the first time analysed all groups of organisms, which were studied in connection with litter, and presented in map form,” says Dr Melanie Bergmann from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). The biologist has been researching deep-sea litter for several years, and developed the AWI Litterbase together with her colleagues Dr Lars Gutow and Mine Tekman.

The team’s motivation: previous compilations of scientific data never included all datasets, because there were too many differences in the methods applied by the various research groups.

“Our global maps also show data in different units. However, we intentionally designed Litterbase with this feature, since it allows users to filter results by type of unit. In this way, values using the same unit can easily be compared –for the first time, for litter in different regions and ecosystems,” explains Lars Gutow, highlighting one of the database’s central features. “At the same time, Litterbase is also of tremendous scientific value. Our database will allow us to assess and better understand the global quantities and distribution patterns of litter in the ocean.”

According to Bergmann, “The maps document where researchers have identified litter. But it’s important to bear in mind that the blank areas of the map don’t necessarily represent clean regions; instead they’re blind spots.”

This information, too, is extremely valuable and helps identify areas where research efforts need to be intensified. For example, it’s readily apparent on the global map that numerous studies have been conducted in the Mediterranean; they indicate that this is one of the most polluted regions in the world in this regard. Yet there have been very few publications from Africa, the open ocean or the Dead Sea, so we still know precious little about the situation in vast expanses of the world’s oceans.

In the course of their literature research, Gutow, Tekman and Bergmann were surprised by the variety of sources where marine litter was described. As the team recalls: “Some litter sightings can be found in publications that actually have nothing to do with litter, like papers on the coral gardens of the Mediterranean or the anthropogenic effects that activities like fishing have on the seafloor.”

And Melanie Bergmann adds: “While compiling Litterbase, I discovered a cache of old data on litter in the Antarctic, which the signatory countries of the Antarctic Treaty gathered on a regular basis. In addition, the ingestion of microplastic at the beginning of the food chain was investigated for various groups of plankton and unicellular organisms as far back as the 1980s. As such, Litterbase will also help us rediscover ‘old’ and in some cases forgotten findings.”

For government authorities, politicians and journalists, not to mention teachers and students, both Gutow and Bergmann are much sought-after experts. The database’s analysis tools allow all of these groups to create global estimates of which animal groups are reportedly hardest hit by marine litter, and what the litter consists of in different ecosystems. Further, all of the scientific literature used to create the Litterbase is also linked, helping interested users to pursue research of their own.

AWI Litterbase is sponsored by the Helmholtz Association’s Earth System Knowledge Platform (ESKP: http://www.eskp.de/), where the eight Helmholtz Centres from the research field Earth and Environment pool their expertise to convey the interconnections between environmental hazards, climate change and pollutants.

Notes for Editors:

Your scientific contact persons are:

• Dr Melanie Bergmann, tel. +49 471 4831-1739 (e-mail: Melanie.Bergmann(at)awi.de)
• Dr Lars Gutow, tel. +49 471 4831-1708 (e-mail: Lars.Gutow(at)awi.de)

Your contact person at the Dept. of Communications and Media Relations is Dr Folke Mehrtens, tel. +49 471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Printable images are available in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>