Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bears, Scavengers Count on All-You-Can-Eat Salmon Buffet Lasting for Months

06.08.2012
Salmon conservation shouldn’t narrowly focus on managing flows in streams and rivers or on preserving only places that currently have strong salmon runs.

Instead, watersheds need a good mix of steep, cold-running streams and slower, meandering streams of warmer water to keep options open for salmon adapted to reproduce better in one setting than the other, new research shows.

Preserving that sort of varied landscape serves not just salmon, it provides an all-summer buffet that brown bears, gulls and other animals need to sustain themselves the rest of the year.

"In any one stream, salmon might spawn for two to four weeks," said Peter Lisi, a University of Washington doctoral student in aquatic and fishery sciences, who studies the Wood River watershed in southwest Alaska.

"Animals like coastal brown bears and Glaucus-winged gulls gorge themselves at one stream for a few weeks and then just move to another stream that might have water temperatures a few degrees warmer and therefore support salmon populations that spawn at a later time," he said. "It's easy for animals to move when such streams are as little as a mile or two apart."

A whole network of streams, some colder and some warmer, provides what Lisi and Daniel Schindler, UW professor of aquatic and fishery sciences, call "hydrological diversity." Such diversity more than triples the time predators have access to salmon in a summer, from just a few weeks to more than three months in the watershed studied.

The researchers' paper on landscape attributes that influence spawn times will be presented Aug. 8 in Portland, Ore., during the Ecological Society of America’s annual meeting.

"Both Glaucus-winged gulls and brown bears have very short growing seasons at high latitudes. Salmon are a key resource that allows these species to fatten up and achieve the necessary annual growth in this short period of time," Schindler said. "A complex landscape results in streams of differing temperature so salmon populations don't spawn at the same time. Predators and scavengers have a much longer window of accessibility."

"We knew that salmon are an important seasonal resource for lots of predators and consumers. However, there is little appreciation for the importance of biological diversity within salmon for these consumers."

The response of salmon to hydrologic diversity is what makes stocks viable over time and will probably make them better able to respond to climate change, Lisi said. Instead of focusing narrowly on flow regimes or trying to decide which individual streams and rivers to protect, a better goal would be to protect a wide range of hydrologic conditions, the co-authors said.

"Biological diversity within salmon stocks has important benefits to terrestrial ecosystems," Schindler said. "This scale of variation in hydrology, geomorphology and biological diversity is often swept under the rug and dismissed as unimportant in activities such as river restoration, projections of climate impacts and fishery management."

The paper, part of a session on linkages between aquatic and terrestrial systems, also describes how biological diversity in returning salmon are linked to the pollination of a flowering plant, something no other group has described.

Populations of kneeling angelica, 3-to-6-foot plants loaded with clusters of tiny white blossoms, don't all bloom at the same time, even though sun and weather conditions might be uniform across a watershed. Instead, these streamside plants have evolved to bloom approximately 10 days after salmon typically arrive at a particular stream.

It takes about that long for salmon to start to die, many of which are killed by bears or die naturally after spawning. Blowflies lay eggs on the carcasses and the result is a population boom of maggots to take advantage of all the dead salmon. Those maggots emerge as adult blowflies the next summer just in time for the salmon run. Before laying their eggs, the blowflies swarm kneeling angelica flowers to feed on nectar, spreading pollen at the same time.

Previous research has looked at direct connections to plants, such as roots taking up nutrients when salmon carcasses decay, Lisi said. This is an indirect consumer pathway.

"Kneeling angelica are among the last plants to bloom. It's fall, everything else is dying, most of the insects are gone but these plants hold out for the arrival of salmon," Lisi said.

The work is funded by the Gordon and Betty Moore Foundation, National Science Foundation and Western Alaska Landscape Conservation Cooperative through the U.S. Fish and Wildlife Service.

For more information:
Lisi, pjlisi@uw.edu, 206-359-0470 (after Aug. 10, he's out of cell contact for rest of summer)

Schindler, deschind@uw.edu, 907-842-2534

Suggested websites
--Peter Lisi
http://fish.washington.edu/research/schindlerlab/gradstudents.html
--Daniel Schindler lab
http://fish.washington.edu/research/schindlerlab/index.html
--Abstract of Ecological Society of America presentation
http://eco.confex.com/eco/2012/webprogrampreliminary/Paper38567.html
--Ecological Society of America annual meeting
http://www.esa.org/portland/
--Find press release online at
http://www.washington.edu/news/2012/08/02/bears-scavengers-count-on-all
-you-can-eat-salmon-buffet-lasting-for-months/

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>