Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bears, Scavengers Count on All-You-Can-Eat Salmon Buffet Lasting for Months

06.08.2012
Salmon conservation shouldn’t narrowly focus on managing flows in streams and rivers or on preserving only places that currently have strong salmon runs.

Instead, watersheds need a good mix of steep, cold-running streams and slower, meandering streams of warmer water to keep options open for salmon adapted to reproduce better in one setting than the other, new research shows.

Preserving that sort of varied landscape serves not just salmon, it provides an all-summer buffet that brown bears, gulls and other animals need to sustain themselves the rest of the year.

"In any one stream, salmon might spawn for two to four weeks," said Peter Lisi, a University of Washington doctoral student in aquatic and fishery sciences, who studies the Wood River watershed in southwest Alaska.

"Animals like coastal brown bears and Glaucus-winged gulls gorge themselves at one stream for a few weeks and then just move to another stream that might have water temperatures a few degrees warmer and therefore support salmon populations that spawn at a later time," he said. "It's easy for animals to move when such streams are as little as a mile or two apart."

A whole network of streams, some colder and some warmer, provides what Lisi and Daniel Schindler, UW professor of aquatic and fishery sciences, call "hydrological diversity." Such diversity more than triples the time predators have access to salmon in a summer, from just a few weeks to more than three months in the watershed studied.

The researchers' paper on landscape attributes that influence spawn times will be presented Aug. 8 in Portland, Ore., during the Ecological Society of America’s annual meeting.

"Both Glaucus-winged gulls and brown bears have very short growing seasons at high latitudes. Salmon are a key resource that allows these species to fatten up and achieve the necessary annual growth in this short period of time," Schindler said. "A complex landscape results in streams of differing temperature so salmon populations don't spawn at the same time. Predators and scavengers have a much longer window of accessibility."

"We knew that salmon are an important seasonal resource for lots of predators and consumers. However, there is little appreciation for the importance of biological diversity within salmon for these consumers."

The response of salmon to hydrologic diversity is what makes stocks viable over time and will probably make them better able to respond to climate change, Lisi said. Instead of focusing narrowly on flow regimes or trying to decide which individual streams and rivers to protect, a better goal would be to protect a wide range of hydrologic conditions, the co-authors said.

"Biological diversity within salmon stocks has important benefits to terrestrial ecosystems," Schindler said. "This scale of variation in hydrology, geomorphology and biological diversity is often swept under the rug and dismissed as unimportant in activities such as river restoration, projections of climate impacts and fishery management."

The paper, part of a session on linkages between aquatic and terrestrial systems, also describes how biological diversity in returning salmon are linked to the pollination of a flowering plant, something no other group has described.

Populations of kneeling angelica, 3-to-6-foot plants loaded with clusters of tiny white blossoms, don't all bloom at the same time, even though sun and weather conditions might be uniform across a watershed. Instead, these streamside plants have evolved to bloom approximately 10 days after salmon typically arrive at a particular stream.

It takes about that long for salmon to start to die, many of which are killed by bears or die naturally after spawning. Blowflies lay eggs on the carcasses and the result is a population boom of maggots to take advantage of all the dead salmon. Those maggots emerge as adult blowflies the next summer just in time for the salmon run. Before laying their eggs, the blowflies swarm kneeling angelica flowers to feed on nectar, spreading pollen at the same time.

Previous research has looked at direct connections to plants, such as roots taking up nutrients when salmon carcasses decay, Lisi said. This is an indirect consumer pathway.

"Kneeling angelica are among the last plants to bloom. It's fall, everything else is dying, most of the insects are gone but these plants hold out for the arrival of salmon," Lisi said.

The work is funded by the Gordon and Betty Moore Foundation, National Science Foundation and Western Alaska Landscape Conservation Cooperative through the U.S. Fish and Wildlife Service.

For more information:
Lisi, pjlisi@uw.edu, 206-359-0470 (after Aug. 10, he's out of cell contact for rest of summer)

Schindler, deschind@uw.edu, 907-842-2534

Suggested websites
--Peter Lisi
http://fish.washington.edu/research/schindlerlab/gradstudents.html
--Daniel Schindler lab
http://fish.washington.edu/research/schindlerlab/index.html
--Abstract of Ecological Society of America presentation
http://eco.confex.com/eco/2012/webprogrampreliminary/Paper38567.html
--Ecological Society of America annual meeting
http://www.esa.org/portland/
--Find press release online at
http://www.washington.edu/news/2012/08/02/bears-scavengers-count-on-all
-you-can-eat-salmon-buffet-lasting-for-months/

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>