Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor Study Finds Golden Algae Responsible for Killing Millions of Fish Less Toxic in Sunlight

16.06.2011
A new Baylor University study has found that sunlight decreases the toxicity of golden algae, which kills millions of fish in the southern United States every year.

While golden algae is primarily a coastal species, it has been found in Texas rivers and lakes, including Lake Whitney and Lake Waco in Central Texas, and Lake Granbury in North Texas.

Experts believe that several environmental factors influence toxin production, but new research from Baylor scientists shows that sunlight is a key component in the magnitude and duration of the toxicity of the algae to fish.

Specifically, the study found that the longer golden algae toxins are exposed to natural sunlight, the less toxic the algal toxin becomes to fish and other aquatic organisms.

"What we think happens in terms of the large fish kills is that sunlight only penetrates down so deep in a lake, so in a lake with golden algae blooms, fish located at greater depths may be exposed to more algal toxins," said study co-author Dr. Bryan Brooks, associate professor of environmental sciences and biomedical studies at Baylor and director of the environmental health sciences program. "Golden algae is aggressive and very unique because it can produce its own toxins, swim, photosynthesize and feed on other organisms. If we can figure out what stimulates and decreases the growth of this algae, we might be able to control it."

Along the Brazos River in north and central Texas, at least seven-million fish have been killed since 1988 due to high golden algae levels, according to Texas Parks and Wildlife. In fact, in 2005 more than a million fish died in Lake Whitney over a three-month period. Officials believe large golden algae blooms contributed to the deaths, attacking the fishes' gills and causing them to suffocate.

The study appears on-line in the Journal of Plankton Research.

Scientists from the University of Texas at Arlington and Texas A&M contributed to the study. The study funded through a grant from the Texas Parks and Wildlife Department.

About Baylor University

Baylor University is a private Christian university and a nationally ranked research institution, classified as such with "high research activity" by the Carnegie Foundation for the Advancement of Teaching. The university provides a vibrant campus community for approximately 15,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest, continually operating university in Texas. Located in Waco, Texas, Baylor welcomes students from all 50 states and more than 80 countries to study a broad range of degrees among its 11 nationally recognized academic divisions.

Media contact: Matt Pene, Assistant Director of Media Communications, 254-710-4656.

Matt Pene | EurekAlert!
Further information:
http://www.baylor.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>