Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor Study Finds Some Desert Birds Less Affected By Wildfires and Climate Change

20.07.2011
Fire and climate change increases food supply for some bird species

A new Baylor University study has found that some bird species in the desert southwest are less affected, and in some cases positively influenced, by widespread fire through their habitat. In fact, the Baylor researchers say that fire actually helps some bird species because of the habitat that is formed after a fire is positive for the bird's prey needs.

The study found that three specific bird species in the Chihuahuan Desert - scaled Quail, Loggerhead Shrike and Rock Wren - will be less affected by current and future wildfires because climate change will dry out the landscape, changing pine forests to uplands without trees and grasses, which provides fuel for wildfires. With the drying out of grasslands, the researchers say, the likelihood of widespread and intense wildfires will decrease over the next 50 years, as wildfires naturally occur and use up the current fuel base. The Baylor researchers also found that as the grasslands dry out, the birds will be able to forage for prey much easier.

"The results were somewhat surprising because the collective thought is that fire and climate change will have only negative effects on animals, but we found that is not the case with these bird species now or in the future around this area, " said study co-author Dr. Joseph White, professor of biology at Baylor who is a fire management expert. "Climate change affects the environment's processes and those processes affect different animals in different ways. In the case of these bird species, our predictive modeling shows it will affect them less than other animals, and we believe in some cases actually help them prosper."

To conduct the study, the Baylor researchers observed the birds over three years in their habitat at more than 70 locations in west Texas and eastern New Mexico as natural weather and climate patterns occurred. The researchers then used that data and combined it with satellite imagery and used a predictive model to calculate what will happen to the bird species over the next 50 years.

The results of the study appear on-line in the journal Conservation Biology.

About Baylor University

Baylor University is a private Christian university and a nationally ranked research institution, classified as such with "high research activity" by the Carnegie Foundation for the Advancement of Teaching. The university provides a vibrant campus community for approximately 15,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest, continually operating university in Texas. Located in Waco, Texas, Baylor welcomes students from all 50 states and more than 80 countries to study a broad range of degrees among its 11 nationally recognized academic divisions.

Media contact:
Matt Pene, Assistant Director of Media Communications, 254-710-4656

Matt Pene | EurekAlert!
Further information:
http://www.baylor.edu

Further reports about: Birds Climate change Wildfires bird species desert pine forest

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>