Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor Study Finds Some Desert Birds Less Affected By Wildfires and Climate Change

20.07.2011
Fire and climate change increases food supply for some bird species

A new Baylor University study has found that some bird species in the desert southwest are less affected, and in some cases positively influenced, by widespread fire through their habitat. In fact, the Baylor researchers say that fire actually helps some bird species because of the habitat that is formed after a fire is positive for the bird's prey needs.

The study found that three specific bird species in the Chihuahuan Desert - scaled Quail, Loggerhead Shrike and Rock Wren - will be less affected by current and future wildfires because climate change will dry out the landscape, changing pine forests to uplands without trees and grasses, which provides fuel for wildfires. With the drying out of grasslands, the researchers say, the likelihood of widespread and intense wildfires will decrease over the next 50 years, as wildfires naturally occur and use up the current fuel base. The Baylor researchers also found that as the grasslands dry out, the birds will be able to forage for prey much easier.

"The results were somewhat surprising because the collective thought is that fire and climate change will have only negative effects on animals, but we found that is not the case with these bird species now or in the future around this area, " said study co-author Dr. Joseph White, professor of biology at Baylor who is a fire management expert. "Climate change affects the environment's processes and those processes affect different animals in different ways. In the case of these bird species, our predictive modeling shows it will affect them less than other animals, and we believe in some cases actually help them prosper."

To conduct the study, the Baylor researchers observed the birds over three years in their habitat at more than 70 locations in west Texas and eastern New Mexico as natural weather and climate patterns occurred. The researchers then used that data and combined it with satellite imagery and used a predictive model to calculate what will happen to the bird species over the next 50 years.

The results of the study appear on-line in the journal Conservation Biology.

About Baylor University

Baylor University is a private Christian university and a nationally ranked research institution, classified as such with "high research activity" by the Carnegie Foundation for the Advancement of Teaching. The university provides a vibrant campus community for approximately 15,000 students by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest, continually operating university in Texas. Located in Waco, Texas, Baylor welcomes students from all 50 states and more than 80 countries to study a broad range of degrees among its 11 nationally recognized academic divisions.

Media contact:
Matt Pene, Assistant Director of Media Communications, 254-710-4656

Matt Pene | EurekAlert!
Further information:
http://www.baylor.edu

Further reports about: Birds Climate change Wildfires bird species desert pine forest

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>