Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barnacles Prefer Upwelling Currents, Enriching Food Chains in the Galapagos

03.03.2010
The barnacle, a key thread in the marine food web, was thought to be missing along rocky coasts dominated by upwelling. Now a research team headed by Brown University marine ecologist Jon Witman has found the opposite to be true: Barnacle populations thrive in vertical upwelling zones in moderately deep waters in the Galapagos Islands. The findings appear in Ecological Monographs.

There’s been a rich debate in marine ecological circles about what happens to a key food source along rocky coastlines dominated by upwelling. The literature is filled with studies suggesting that the larvae of simple prey organisms such as barnacles and mussels hitch a ride on the coast-to-offshore currents typical of upwelling and are thus mostly absent in the coastal tidal zones.

That theory is getting a major challenge. In a paper in Ecological Monographs, Brown University marine ecologist Jon Witman and colleagues report that a key thread in the food web, the barnacle — the popcorn of the sea — flourishes in zones with vertical upwelling. Working at an expansive range of underwater sites in the Galapagos Islands, Witman and his team found that at two subtidal depths, barnacle larvae had latched onto rock walls, despite the vertical currents. In fact, the swifter the vertical current, the more likely the barnacles would colonize a rocky surface, the team found.

The finding “is counter to the prevailing notion about how marine communities are influenced by upwelling," said Witman, professor of biology in the Department of Ecology and Evolutionary Biology.

Barnacle communities thrived in the vertical-current sites, the team also found. The group routinely found specimens that had grown from one field season to the next to 3 centimeters (about 1 inch) in diameter — “big enough to make soup out of,” Witman said. The researchers also documented the presence of whelks and hogfish, which feast on barnacles. This predator-prey relationship shows that vertical upwelling zones are “much more dynamic ecosystems in terms of marine organisms than previously believed,” Witman said.

Professor of Biology Witman and his team, including Brown graduate student Margarita Brandt and Franz Smith of CSIRO Marine and Atmospheric Research in Australia, chose a dozen sites of underwater cliffs, ledges and slopes along a 125-kilometer-long transect in the Galapagos. During three field seasons, the team bolted nearly 1,500 plates at depths of 6 and 15 meters to track the colonization of barnacle larvae and the growth of populations in areas with weak, intermediate and strong vertical upwelling.

The team also documented for the first time the strength of currents at the sampling locations, which included a dozen islands or outcrops located in the center of the archipelago. In areas with the most vertical upwelling, the researchers found, the current moved at a brisk 0.6 meters (2 feet) per second; the weakest vertical currents were measured at 5 centimeters (0.2 feet) per second.

Scientists who study coastal marine communities had assumed that prey species such as barnacles and mussels would be largely absent in vertical upwelling areas, since the larvae, which float freely in the water as they seek a surface to attach to, would more likely be swept away in the coast-to-offshore currents. Studies of the near-surface layer of the water in rocky tidal zones confirmed that thinking. But the field work by Witman and his group, in deeper water than previous studies, told a different tale: Few barnacles were found on the plates in the weak upwelling zones, while plates at the strong upwelling sites were teeming with the crustaceans. Flourishing barnacle communities were found at both the 6-meter and 15-meter stations, the researchers reported.

The scientists think the free-floating larvae thrive in the vertical-current zones because they are constantly being bounced against the rocky walls and eventually find a tranquil spot in micro crevices in the rock to latch on to. “It’s a contact game,” Witman said.

The team suggests the observations could hold true for other rocky tidal ecosystems. “We’re one of the few people doing underwater experimental ecology in the Galapagos,” said Brandt, who is Ecuadorean. “This project is one of the first attempts to do that.”

The National Science Foundation, the Andrew W. Mellon Foundation and the private Banks Foundation funded the research.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu
http://news.brown.edu/pressreleases/2010/03/upwelling

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>