Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Barcoding endangered sea turtles

Demonstrating that short genetic sequences identify migratory marine species

Conservation geneticists who study sea turtles have a new tool to help track this highly migratory and endangered group of marine animals: DNA barcodes.

DNA barcodes are short genetic sequences that efficiently distinguish species from each other—even if the samples from which the DNA is extracted are minute or degraded. Now, a recently published research paper by scientists from the American Museum of Natural History and the University of Canberra, among other organizations, demonstrates that this technology can be applied to all seven sea turtle species and can provide insight into the genetic structure of a widely-dispersed and ancient group of animals.

"This is the first study to document DNA barcodes of all species of sea turtles from around the world," says Eugenia Naro-Maciel, Marine Biodiversity Scientist at the Center for Biodiversity and Conservation at the Museum and first author of the paper published in the early online edition of Molecular Ecology Resources. "These barcodes can be used to document biological diversity in a standardized fashion and for the conservation of these charismatic and ecologically important marine animals."

DNA barcodes are relatively short segments of mitochondrial DNA. A region of the COI, or cox1 gene (cytochrome c oxidase subunit 1) has been agreed-upon by researchers as appropriate for barcoding, given that it is both highly variable and very specific. This portion of the genome mutates quickly enough to distinguish many closely related species but also slowly enough so that individuals within a species may have similar barcodes. Barcoding has been used to check the accuracy of caviar and red snapper labeling and to identify the presence of endangered whales in Asian markets, as well as other applications.

Through the current study, the research team found that all seven sea turtle species can be consistently distinguished from each other by DNA barcodes. Samples were collected from 249 individuals from the Atlantic and Pacific Oceans, as well as from the Mediterranean Sea. Variation between species ranged from 1.68% to 13%, while variation within each species was relatively low, ranging from 0 to 0.9%. The genetic sequence from green turtles of the Eastern Tropical Pacific population, which can be distinguished from other green turtles by their darker coloration, was identical to one found in Australia.

Analysis of the barcodes in this study used a comprehensive method based on diagnostic characters developed by co-author Rob DeSalle, curator in the Sackler Institute for Comparative Genomics at the Museum, and colleagues. This method contrasts with common approaches also employed in this study, which assign sequences to the most similar genetic group (and which may not be accurate because of the sometimes arbitrary thresholds for species identity). "With diagnostic characters, we can use gene sequences to compare different groups in a manner similar to classifying animals in the field based on their unique attributes, and in line with classical taxonomy," notes DeSalle.

Naro-Maciel adds that "by identifying these animals to species and providing a standardized registry for documenting genetic diversity within this group, DNA barcoding promises to advance conservation and research." Highly migratory sea turtles face a myriad of threats worldwide from overharvest, fisheries interactions, habitat loss, climate change, pollution, disease, and other factors, and effective conservation measures are needed. The potential for DNA barcoding applications is significant: trade in the meat, eggs, leather, shell, and bone often means that the species identity or geographic origin of a product is difficult to ascertain using conventional means. Barcoding items collected by wildlife management could provide critical information and tools to those tracking international trade in wildlife products. In addition, animals trapped as fisheries bycatch or stranded onshore may be damaged beyond recognition, but identifiable through DNA barcoding. To assist in these efforts, barcode sequences from this study have been supplied to the Barcode of Life database and GenBank so that the data are freely available.

This research was funded in part by the Royal Caribbean Ocean Fund, the Regina Bauer Frankenberg Foundation for Animal Welfare, and the Alfred P. Sloan Foundation. In addition to Naro-Maciel and DeSalle, authors include Brendan Reid (Columbia University), Nancy FitzSimmons (University of Canberra in Australia), Minh Le, Rob DeSalle, and George Amato (American Museum of Natural History).

Kristin Elise Phillips | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>