Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria forge nitrogen from nitric oxide

06.10.2011
Max Planck scientists unravel key pathway in the nitrogen cycle

The anaerobic oxidation of ammonia (anammox) is an important pathway in the nitrogen cycle that was only discovered in the 1980s. Currently, scientists estimate that about 50 percent of the nitrogen in the atmosphere is forged by this process. A group of specialized bacteria perform the anammox reaction, but so far scientists have been in the dark about how these bacteria could convert ammonia to nitrogen in the complete absence of oxygen. Now, 25 years after its discovery, they finally solved the molecular mechanism of anammox.

Anammox bacteria are very unusual because they contain an organelle which is a typical eukaryotic feature. Inside this organelle, known as the “anammoxosome”, the bacteria perform the anammox reaction. The membrane of the anammoxosome presumably protects the cells from highly reactive intermediates of the anammox reaction. These intermediates could be hydrazine and hydroxylamine, as microbiologists proposed many years ago. This was very exciting news because the turnover of hydrazine, a very powerful reductant also used as rocket fuel, had never been shown in biology. However, these early experiments were provisional and many open questions remained.

To finally unravel the pathway experimentally was a very difficult enterprise. Marc Strous from the Max Planck Institute in Bremen says: “The anammox organisms are difficult to cultivate because they divide only once every two weeks. Therefore we had to develop cultivation approaches suitable for such low growth rates. Even after 20 years of trials, we can still only grow the organisms in bioreactors and not in pure culture.” In the present study, the researchers make use of the latest innovation in bioreactor technology for anammox cultivation: the membrane bioreactor. In such bioreactors the anammox organisms grow as suspended cells rather than in biofilms on surfaces, and relatively few contaminating organisms are present. The study makes use of protein purification and proteins cannot be effectively purified from biofilms because of the large amount of slime associated with these biofilms.

Another important key to the metabolism was the availability of the genome sequence of one of the best known anammox bacteria, Kuenenia stuttgartiensis. With the knowledge of the genome, the authors knew which proteins could be important. Based on the genome sequence, they could predict that nitric oxide, not hydroxylamine, might be the precursor for hydrazine. With a set of state-of-the art molecular methods the scientists could thus completely unravel the anammox pathway, and unequivocally establish the role of hydrazine and nitric oxide (NO) as intermediates.

“With this significant advance we can finally understand how the nitrogen in the air we breathe is created: from rocket fuel and nitric oxide!” concludes Marc Strous. With the establishment of the prominent role of nitric oxide in both anammox and denitrification, the research also opens a new window on the evolution of the biological nitrogen cycle in the Earth's distant past. Marc Strous explains: ”In the early days in Earth’s history, the nitric oxide accumulated in the atmosphere by vulcanic activity, was presumably the first “deep electron sink” on earth and may so have enabled the evolution of both microbial metabolic pathways anammox and denitrification.”

Participating institutions:

Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, The Netherlands

Nijmegen Centre for Mitochondrial Disorders, Nijmegen Proteomics Facility, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Radboud University, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands

Delft University of Technology, Department Biotechnology, Delft, The Netherlands

Max Planck Institute for Marine Microbiology, Bremen, Germany

Contact
Prof. Dr. Ir. Marc Strous
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 42 1202-8822
Email: mstrous@mpi-bremen.de
Dr. Rita Dunker
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-856
Fax: +49 421 2028-790
Email: rdunker@mpi-bremen.de
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-704
Fax: +49 421 2028-790
Email: mschloes@mpi-bremen.de
Original publication
B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, and M. Strous.
Molecular mechanism of anaerobic ammonium oxidation
Nature, 2011 Oct 2, doi: 10.1038/nature10453

Prof. Dr. Ir. Marc Strous | EurekAlert!
Further information:
http://www.mpg.de/4461554/anammox_molecular_mechanism

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>