Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria forge nitrogen from nitric oxide

06.10.2011
Max Planck scientists unravel key pathway in the nitrogen cycle

The anaerobic oxidation of ammonia (anammox) is an important pathway in the nitrogen cycle that was only discovered in the 1980s. Currently, scientists estimate that about 50 percent of the nitrogen in the atmosphere is forged by this process. A group of specialized bacteria perform the anammox reaction, but so far scientists have been in the dark about how these bacteria could convert ammonia to nitrogen in the complete absence of oxygen. Now, 25 years after its discovery, they finally solved the molecular mechanism of anammox.

Anammox bacteria are very unusual because they contain an organelle which is a typical eukaryotic feature. Inside this organelle, known as the “anammoxosome”, the bacteria perform the anammox reaction. The membrane of the anammoxosome presumably protects the cells from highly reactive intermediates of the anammox reaction. These intermediates could be hydrazine and hydroxylamine, as microbiologists proposed many years ago. This was very exciting news because the turnover of hydrazine, a very powerful reductant also used as rocket fuel, had never been shown in biology. However, these early experiments were provisional and many open questions remained.

To finally unravel the pathway experimentally was a very difficult enterprise. Marc Strous from the Max Planck Institute in Bremen says: “The anammox organisms are difficult to cultivate because they divide only once every two weeks. Therefore we had to develop cultivation approaches suitable for such low growth rates. Even after 20 years of trials, we can still only grow the organisms in bioreactors and not in pure culture.” In the present study, the researchers make use of the latest innovation in bioreactor technology for anammox cultivation: the membrane bioreactor. In such bioreactors the anammox organisms grow as suspended cells rather than in biofilms on surfaces, and relatively few contaminating organisms are present. The study makes use of protein purification and proteins cannot be effectively purified from biofilms because of the large amount of slime associated with these biofilms.

Another important key to the metabolism was the availability of the genome sequence of one of the best known anammox bacteria, Kuenenia stuttgartiensis. With the knowledge of the genome, the authors knew which proteins could be important. Based on the genome sequence, they could predict that nitric oxide, not hydroxylamine, might be the precursor for hydrazine. With a set of state-of-the art molecular methods the scientists could thus completely unravel the anammox pathway, and unequivocally establish the role of hydrazine and nitric oxide (NO) as intermediates.

“With this significant advance we can finally understand how the nitrogen in the air we breathe is created: from rocket fuel and nitric oxide!” concludes Marc Strous. With the establishment of the prominent role of nitric oxide in both anammox and denitrification, the research also opens a new window on the evolution of the biological nitrogen cycle in the Earth's distant past. Marc Strous explains: ”In the early days in Earth’s history, the nitric oxide accumulated in the atmosphere by vulcanic activity, was presumably the first “deep electron sink” on earth and may so have enabled the evolution of both microbial metabolic pathways anammox and denitrification.”

Participating institutions:

Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, The Netherlands

Nijmegen Centre for Mitochondrial Disorders, Nijmegen Proteomics Facility, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Radboud University, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands

Delft University of Technology, Department Biotechnology, Delft, The Netherlands

Max Planck Institute for Marine Microbiology, Bremen, Germany

Contact
Prof. Dr. Ir. Marc Strous
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 42 1202-8822
Email: mstrous@mpi-bremen.de
Dr. Rita Dunker
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-856
Fax: +49 421 2028-790
Email: rdunker@mpi-bremen.de
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-704
Fax: +49 421 2028-790
Email: mschloes@mpi-bremen.de
Original publication
B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, and M. Strous.
Molecular mechanism of anaerobic ammonium oxidation
Nature, 2011 Oct 2, doi: 10.1038/nature10453

Prof. Dr. Ir. Marc Strous | EurekAlert!
Further information:
http://www.mpg.de/4461554/anammox_molecular_mechanism

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>