Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby Fish in Polluted San Francisco Estuary Waters Are Stunted and Deformed

10.12.2008
Striped bass in the San Francisco Estuary are contaminated before birth with a toxic mix of pesticides, industrial chemicals and flame retardants that their mothers acquire from estuary waters and food sources and pass on to their eggs, say UC Davis researchers.

Using new analytical techniques, the researchers found that offspring of estuary fish had underdeveloped brains, inadequate energy supplies and dysfunctional livers. They grew slower and were smaller than offspring of hatchery fish raised in clean water.

"This is one of the first studies examining the effects of real-world contaminant mixtures on growth and development in wildlife," said study lead author David Ostrach, a research scientist at the UC Davis Center for Watershed Sciences. He said the findings have implications far beyond fish, because the estuary is the water source for two-thirds of the people and most of the farms in California.

"If the fish living in this water are not healthy and are passing on contaminants to their young, what is happening to the people who use the water, are exposed to the same chemicals or eat the fish?" Ostrach said.

"We should be asking hard questions about the nature and source of these contaminants, as well as acting to stop the ongoing pollution and mitigate these current problems."

The new study, published online Nov. 24 by the journal Proceedings of the National Academy of Sciences, is one of a series of reports by Ostrach and UC Davis colleagues on investigations they began in 1988. Their goal is to better understand the reasons for plummeting fish populations in the estuary, an enormous California region that includes the Sacramento-San Joaquin River Delta and San Francisco Bay.

The estuary is one of the world's most important water supplies for urban use and agriculture, and is also one of the most contaminated aquatic ecosystems.

The ominous decline in estuary populations of striped bass, delta smelt, longfin smelt and threadfin shad, named the "pelagic organism decline," or POD, by the region's environmental scientists, was first reported at the turn of the century and has continued to worsen through 2007.

Ostrach's lab at UC Davis is part of the multi-agency POD research team and charged with understanding contaminant effects and other environmental stressors on the entire life cycle of striped bass.

Studies of striped bass are useful because, first, they are a key indicator of San Francisco Estuary ecosystem health and, second, because contaminant levels and effects in the fish could predict the same in people. For example, one of the contaminants found in the fish in this study, PDBEs, have been found in Bay Area women's breast milk at levels 100 times those measured in women elsewhere in the world.

The new study details how Ostrach and his team caught gravid female striped bass in the Upper Sacramento River, then compared the river fishes' eggs and hatchlings (larvae) to offspring of identical but uncontaminated fish raised in a hatchery.

In the river-caught fishes' offspring, the UC Davis researchers found harmful amounts of PBDEs, PCBs and 16 pesticides.

PBDEs (polybrominated diphenyl ethers) are widely used flame retardants; PCBs (polychlorinated biphenyls) are chemicals once used in making a range of products, from paper goods to electric transformers; and the pesticides detected include some currently widely used in agriculture, such as chlorpyrifos and dieldren, and others banned decades ago, such as DDT.

These compounds are known to cause myriad problems in both young and adult organisms, including skeletal and organ deformities and dysfunction; changes in hormone function (endocrine disruption); and changes in behavior. Some of the effects are permanent. Furthermore, Ostrach said, when the compounds are combined, the effects can be increased by several orders of magnitude.

Ostrach's co-authors Janine Low-Marchelli and Shaleah Whiteman are former UC Davis undergraduate students. Co-author Kai Eder was Ostrach's postdoctoral scholar in Joseph Zinkl's laboratory in the UC Davis School of Veterinary Medicine.

Since 1988, the Ostrach laboratory has received more than $1.5 million in funding from agencies working on Bay-Delta ecosystem problems and expects to conduct an additional $1.5 million worth of studies in the next few years. Key funders include the UC Davis School of Veterinary Medicine, California's Department of Water Resources, State Water Resources Control Board and Department of Fish and Game, San Francisco Estuary Institute and the U.S. Fish and Wildlife Service.

About UC Davis
For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science -- and advanced degrees from five professional schools: Education, Law, Management, Medicine, and Veterinary Medicine. The UC Davis School of Medicine and UC Davis Medical Center are located on the Sacramento campus near downtown.

Davis Ostrach | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>