Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aussie Wasp on the Hunt for Redback Spiders

12.09.2012
University of Adelaide researchers say a small wasp that scientists had forgotten about for more than 200 years is now making a name for itself – as a predator of Australia's most common dangerous spider, the redback.

The wasp (Agenioideus nigricornis) was first described scientifically in 1775 by Danish entomologist Johan Christian Fabricius, thanks to samples collected in Australia during Captain Cook's first great voyage (1768–1771).

"Since then, scientists have largely forgotten about the wasp," says Professor Andy Austin from the University of Adelaide's Australian Centre for Evolutionary Biology & Biodiversity. "It is widespread across Australia and can be found in a number of collections, but until now we haven't known the importance of this particular species."

The wasp is now being dubbed the "redback spider-hunting wasp" after a family in Beaconsfield, Western Australia, discovered one of them with a paralyzed redback spider in their back yard.

Florian Irwin, then aged 9, spotted the wasp dragging the spider several meters to its nest, and his father, Dr Peter Irwin, photographed the event and kept the specimens. Peter, who is an Associate Professor at Murdoch University, contacted the Western Australian Museum about the discovery; the Museum alerted Professor Austin and research fellow Dr Lars Krogmann at the University of Adelaide.

"The Museum knew we were doing research into the Agenioideus, which belongs to the family Pompilidae, the spider-hunting wasps. Little is known about them, despite various species of Agenioideus being distributed throughout the world," Professor Austin says.

"We're very excited by this discovery, which has prompted us to study this species of wasp more closely. It's the first record of a wasp preying on redback spiders and it contributes greatly to our understanding of how these wasps behave in Australia."

With a body less than a centimeter in length, an adult redback spider-hunting wasp is no bigger than its prey. It stings and paralyses the redback spider and drags it back to its nest, where the wasp lays an egg on it. The spider remains alive but is paralyzed. Once the egg hatches, the larval wasp feeds on the spider.

The redback spider (Latrodectus hasselti) is an Australian relative of North America's black widow spider.

"The redback spider is notorious in Australia, and it has spread to some other countries, notably Japan and New Zealand. Redbacks are one of the most dangerous species in Australia and they're mostly associated with human dwellings, which has been a problem for many years," Professor Austin says.

"The redback spider-hunting wasp is doing its part to keep the population of redback spiders down, but it doesn't hunt all the time and is unlikely to completely eradicate the spiders."

Dr Krogmann (who is now based at the Stuttgart State Museum of Natural History) and Professor Austin have published a paper about the redback spider-hunting wasp in this month's issue of the Australian Journal of Entomology.

Professor Andy Austin
Australian Centre for Evolutionary Biology & Biodiversity
Environment Institute
The University of Adelaide
Cell phone: +61 438 378 151
andy.austin@adelaide.edu.au

Professor Andy Austin | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>