Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assisted colonization key to species' survival in changing climate

19.02.2009
Species are adapting slowly to climate change and 'assisted colonisation' can play a vital role in helping wildlife to survive in a warming world.

A team of researchers, led by biologists at Durham and York Universities, has shown that translocation to climatically-suitable areas can work and that butterflies can survive beyond their northern ranges if they're given a 'helping hand' to get to suitable new habitats.

The research, funded by NERC, aimed to examine the implications of climate change for the conservation and management of biodiversity by looking at the distribution of butterflies.

The research team ran a series of climate-change models to identify areas in northern England where, as a result of the climate warming of recent decades, butterflies found further south might thrive but which they had not yet reached. Researchers then transported Marbled White and Small Skipper butterflies to two of these climatically-suitable sites that were well beyond the butterflies' northern range boundaries.

Between 1999 and 2000, free flying individuals were collected from sites in North Yorkshire and translocated, using soft cages, to release sites in disused quarries in County Durham and Northumberland. These sites had ample suitable breeding habitat for the butterflies, and were chosen after careful discussion with local experts. After release, the introduced populations were monitored over the following 8 years.

The research, published in Conservation Letters, involved Durham University, the University of York, the University of Leeds, the Centre for Ecology and Hydrology, and Butterfly Conservation. The team's modelling shows that there is a lag between climate change and distribution change, and the practical results prove that butterflies can flourish in habitats that they might not normally be able to reach.

Professor Brian Huntley from Durham University said: "The success of the assisted colonisation demonstrates for the first time that moving species to areas identified as newly climatically-suitable can play a role in wildlife conservation. This is likely to be especially important for rare species and for those species that experience difficulty in crossing areas of unfavourable habitat."

"The results show that, although areas in the north are becoming suitable for a wider range of butterflies, shifts in butterfly distributions are lagging behind climate change because many species have limited mobility or struggle to cross large distances between sites offering suitable habitat."

Although butterflies can be a good indicator of climate change, colonisation of newly-suitable sites can be severely affected by land-use changes that lead to large gaps between suitable habitat patches. With shrinking habitats, the problem will be even more acute for weaker flying butterflies with more limited flight potentials.

Dr Jane Hill, from the Department of Biology at the University of York said: "Many British butterflies are declining because of habitat destruction. These results suggest that, providing there is little risk, assisted colonisation might be a cost-effective tool for conservation."

Prof. Huntley said: "Our experiment also demonstrate the reliability of our predictions of which areas are newly suitable as a result of recent climate change. This is important because, as climate continues to change this century, successful biodiversity conservation will require reliable predictions of species' responses to the changing climate."

The results illustrate the need for a rethink on urban and rural development policies – a sufficient density of habitat patches is vital to assist butterflies and other species to shift their distributions in response to climate change.

Richard Fox, Surveys Manager for the UK charity Butterfly Conservation, who collaborated in the research said: "Britain's butterflies are in steep decline largely due to the destruction and fragmentation of their habitats by human activity such as intensive farming and forestry, and urban development. The warming climate that Britain has experienced over the past few decades should have been a blessing for butterflies, but in reality few have benefited."

"Research, using millions of butterfly sightings collected by our volunteer observers, has suggested that even those butterflies that have spread northwards and colonised new territory as a result of climate change, have been held back by lack of habitat to act as stepping stones or green corridors. As climate change accelerates, more and more species will be threatened by it."

Five Facts about the Small Skipper (Thymelicus sylvestris):

- Can be seen as a butterfly end of June to the start of August.
- One of the most common species of butterfly.
- Female lays her eggs on the grass species known as Yorkshire Fog (Holcus lanatus).
- The caterpillars spend the winter cocooned inside the grass stem.
- Typical habitats are rough grass and downland, grass verges and woodland clearings.

Five Facts about the Marbled White (Melanargia galathea):

- Beautiful patterns of striking black and white.
- One of the more common species in the south.
- Flies late June to early August.
- The female drops her eggs to the ground rather than choosing a specific grass species.

- The Red Fescue (Festuca rubra) and Sheep's Fescue (F. ovina) are the main plants that the caterpillars use.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>