Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assisted colonization key to species' survival in changing climate

19.02.2009
Species are adapting slowly to climate change and 'assisted colonisation' can play a vital role in helping wildlife to survive in a warming world.

A team of researchers, led by biologists at Durham and York Universities, has shown that translocation to climatically-suitable areas can work and that butterflies can survive beyond their northern ranges if they're given a 'helping hand' to get to suitable new habitats.

The research, funded by NERC, aimed to examine the implications of climate change for the conservation and management of biodiversity by looking at the distribution of butterflies.

The research team ran a series of climate-change models to identify areas in northern England where, as a result of the climate warming of recent decades, butterflies found further south might thrive but which they had not yet reached. Researchers then transported Marbled White and Small Skipper butterflies to two of these climatically-suitable sites that were well beyond the butterflies' northern range boundaries.

Between 1999 and 2000, free flying individuals were collected from sites in North Yorkshire and translocated, using soft cages, to release sites in disused quarries in County Durham and Northumberland. These sites had ample suitable breeding habitat for the butterflies, and were chosen after careful discussion with local experts. After release, the introduced populations were monitored over the following 8 years.

The research, published in Conservation Letters, involved Durham University, the University of York, the University of Leeds, the Centre for Ecology and Hydrology, and Butterfly Conservation. The team's modelling shows that there is a lag between climate change and distribution change, and the practical results prove that butterflies can flourish in habitats that they might not normally be able to reach.

Professor Brian Huntley from Durham University said: "The success of the assisted colonisation demonstrates for the first time that moving species to areas identified as newly climatically-suitable can play a role in wildlife conservation. This is likely to be especially important for rare species and for those species that experience difficulty in crossing areas of unfavourable habitat."

"The results show that, although areas in the north are becoming suitable for a wider range of butterflies, shifts in butterfly distributions are lagging behind climate change because many species have limited mobility or struggle to cross large distances between sites offering suitable habitat."

Although butterflies can be a good indicator of climate change, colonisation of newly-suitable sites can be severely affected by land-use changes that lead to large gaps between suitable habitat patches. With shrinking habitats, the problem will be even more acute for weaker flying butterflies with more limited flight potentials.

Dr Jane Hill, from the Department of Biology at the University of York said: "Many British butterflies are declining because of habitat destruction. These results suggest that, providing there is little risk, assisted colonisation might be a cost-effective tool for conservation."

Prof. Huntley said: "Our experiment also demonstrate the reliability of our predictions of which areas are newly suitable as a result of recent climate change. This is important because, as climate continues to change this century, successful biodiversity conservation will require reliable predictions of species' responses to the changing climate."

The results illustrate the need for a rethink on urban and rural development policies – a sufficient density of habitat patches is vital to assist butterflies and other species to shift their distributions in response to climate change.

Richard Fox, Surveys Manager for the UK charity Butterfly Conservation, who collaborated in the research said: "Britain's butterflies are in steep decline largely due to the destruction and fragmentation of their habitats by human activity such as intensive farming and forestry, and urban development. The warming climate that Britain has experienced over the past few decades should have been a blessing for butterflies, but in reality few have benefited."

"Research, using millions of butterfly sightings collected by our volunteer observers, has suggested that even those butterflies that have spread northwards and colonised new territory as a result of climate change, have been held back by lack of habitat to act as stepping stones or green corridors. As climate change accelerates, more and more species will be threatened by it."

Five Facts about the Small Skipper (Thymelicus sylvestris):

- Can be seen as a butterfly end of June to the start of August.
- One of the most common species of butterfly.
- Female lays her eggs on the grass species known as Yorkshire Fog (Holcus lanatus).
- The caterpillars spend the winter cocooned inside the grass stem.
- Typical habitats are rough grass and downland, grass verges and woodland clearings.

Five Facts about the Marbled White (Melanargia galathea):

- Beautiful patterns of striking black and white.
- One of the more common species in the south.
- Flies late June to early August.
- The female drops her eggs to the ground rather than choosing a specific grass species.

- The Red Fescue (Festuca rubra) and Sheep's Fescue (F. ovina) are the main plants that the caterpillars use.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>