Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Assisted colonization key to species' survival in changing climate

Species are adapting slowly to climate change and 'assisted colonisation' can play a vital role in helping wildlife to survive in a warming world.

A team of researchers, led by biologists at Durham and York Universities, has shown that translocation to climatically-suitable areas can work and that butterflies can survive beyond their northern ranges if they're given a 'helping hand' to get to suitable new habitats.

The research, funded by NERC, aimed to examine the implications of climate change for the conservation and management of biodiversity by looking at the distribution of butterflies.

The research team ran a series of climate-change models to identify areas in northern England where, as a result of the climate warming of recent decades, butterflies found further south might thrive but which they had not yet reached. Researchers then transported Marbled White and Small Skipper butterflies to two of these climatically-suitable sites that were well beyond the butterflies' northern range boundaries.

Between 1999 and 2000, free flying individuals were collected from sites in North Yorkshire and translocated, using soft cages, to release sites in disused quarries in County Durham and Northumberland. These sites had ample suitable breeding habitat for the butterflies, and were chosen after careful discussion with local experts. After release, the introduced populations were monitored over the following 8 years.

The research, published in Conservation Letters, involved Durham University, the University of York, the University of Leeds, the Centre for Ecology and Hydrology, and Butterfly Conservation. The team's modelling shows that there is a lag between climate change and distribution change, and the practical results prove that butterflies can flourish in habitats that they might not normally be able to reach.

Professor Brian Huntley from Durham University said: "The success of the assisted colonisation demonstrates for the first time that moving species to areas identified as newly climatically-suitable can play a role in wildlife conservation. This is likely to be especially important for rare species and for those species that experience difficulty in crossing areas of unfavourable habitat."

"The results show that, although areas in the north are becoming suitable for a wider range of butterflies, shifts in butterfly distributions are lagging behind climate change because many species have limited mobility or struggle to cross large distances between sites offering suitable habitat."

Although butterflies can be a good indicator of climate change, colonisation of newly-suitable sites can be severely affected by land-use changes that lead to large gaps between suitable habitat patches. With shrinking habitats, the problem will be even more acute for weaker flying butterflies with more limited flight potentials.

Dr Jane Hill, from the Department of Biology at the University of York said: "Many British butterflies are declining because of habitat destruction. These results suggest that, providing there is little risk, assisted colonisation might be a cost-effective tool for conservation."

Prof. Huntley said: "Our experiment also demonstrate the reliability of our predictions of which areas are newly suitable as a result of recent climate change. This is important because, as climate continues to change this century, successful biodiversity conservation will require reliable predictions of species' responses to the changing climate."

The results illustrate the need for a rethink on urban and rural development policies – a sufficient density of habitat patches is vital to assist butterflies and other species to shift their distributions in response to climate change.

Richard Fox, Surveys Manager for the UK charity Butterfly Conservation, who collaborated in the research said: "Britain's butterflies are in steep decline largely due to the destruction and fragmentation of their habitats by human activity such as intensive farming and forestry, and urban development. The warming climate that Britain has experienced over the past few decades should have been a blessing for butterflies, but in reality few have benefited."

"Research, using millions of butterfly sightings collected by our volunteer observers, has suggested that even those butterflies that have spread northwards and colonised new territory as a result of climate change, have been held back by lack of habitat to act as stepping stones or green corridors. As climate change accelerates, more and more species will be threatened by it."

Five Facts about the Small Skipper (Thymelicus sylvestris):

- Can be seen as a butterfly end of June to the start of August.
- One of the most common species of butterfly.
- Female lays her eggs on the grass species known as Yorkshire Fog (Holcus lanatus).
- The caterpillars spend the winter cocooned inside the grass stem.
- Typical habitats are rough grass and downland, grass verges and woodland clearings.

Five Facts about the Marbled White (Melanargia galathea):

- Beautiful patterns of striking black and white.
- One of the more common species in the south.
- Flies late June to early August.
- The female drops her eggs to the ground rather than choosing a specific grass species.

- The Red Fescue (Festuca rubra) and Sheep's Fescue (F. ovina) are the main plants that the caterpillars use.

Carl Stiansen | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>