Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne Leadership Computing Facility Makes It Easy to be 'Green'

16.12.2008
Several innovative steps designed to maximize the efficiency of Argonne's new Blue Gene/P high-performance computer have saved many taxpayer dollars while reducing the laboratory's environmental footprint.

From Deep Blue, the computer that defeated Garry Kasparov in a 1997 chess match, to the new Blue Gene® line of high-performance computers created by IBM, a single color has traditionally been associated with advanced computing.

With the recent opening of the Argonne Leadership Computing Facility (ALCF) at the U.S. Department of Energy's Argonne National Laboratory, however, high-performance computing has taken on a different hue: green. Several innovative steps designed to maximize the efficiency of Argonne's new Blue Gene/P high-performance computer have saved many taxpayer dollars while reducing the laboratory's environmental footprint.

While similar computing centers at other laboratories and institutions often require several megawatts of electricity – enough to meet the energy demands a small town – the ALCF needs only a little more than one megawatt of power. "Because the ALCF can effectively meet the demands of this world-class computer, the laboratory ends up saving taxpayers more than a million dollars a year," said Paul Messina, director of science at the ALCF.

The Blue Gene/P currently runs at a speed of more than 557 teraflops, which means that it can complete more than 557 trillion calculations per second. While several high-performance computing facilities recently established or upgraded at some of Argonne's sister laboratories have surpassed that mark, only one exceeds the efficiency of Argonne's Blue Gene/P. "The Blue Gene/P uses about a third as much electricity as a machine of comparable size built with more conventional parts," Messina said.

While a megawatt of electricity might seem like a lot of power, the massive number of computations that the Blue Gene/P can do puts it in perspective. Energy efficiency of high-performance computers is measured in flops per watt – how many calculations per second the computer can do for every watt of electricity it uses.

According to the November 2008 Green500 ranking of supercomputers, the Blue Gene/P's energy efficiency averages out to more than 350 million calculations a second per watt. By contrast, a common household light bulb frequently uses between 50 and 100 watts of electricity. Among the top 20 supercomputers in the world, the Blue Gene/P is the second-most energy-efficient. "The fact that we are running such a powerful computer so efficiently shows that we can simultaneously respond to the demands of the advanced simulation and modeling community and the environmental concerns of today's society," Messina said.

Much of the electricity that the Blue Gene/P requires is used not to actually process the computations, but rather to cool the machinery. Without any cooling at all, the room that houses the computer would reach 100 degrees within ten minutes after the computers started running.

To keep the facility cool and safe, six air handlers move 300,000 cubic feet of air per minute under the floor, keeping the room chilled to 64 degrees Fahrenheit. These air handlers, according to Messina, cool more cost-effectively than large air conditioners used at other facilities. "Many other high-performance computing centers require as much electricity to cool their computers as they do to operate them, but here at Argonne we need only an additional 60 percent," he said. "We not only have a green computer, we have an entire green facility."

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | Newswise Science News
Further information:
http://www.anl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>