Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Montana's invasive fish in for a shock?

07.10.2014

Study finds that electrofishing can be used to target non-native species and may be a viable alternative to non-specific fish toxicant treatments of small streams

A new paper from the Wildlife Conservation Society, Montana State University, Montana Department of Fish, Wildlife and Parks, and the U.S. Geological Survey looks at the feasibility of electrofishing to selectively remove invasive trout species from Montana streams as an alternative to using fish toxicants known as piscicides that effect all gill-breathing organisms.


A westslope cutthroat trout is measured by scientists before being returned to White's creek where it was collected.

Credit: Brad Shepard / Montana Fish, Wildlife and Parks

Westslope Cutthroat Trout (WCT) have experienced severe declines throughout much of their historical range. One major reason for this decline is the current competitive advantages enjoyed by non-native Brook Trout that are displacing WCT from their habitat.

Due to this ongoing dynamic, data indicate that the probability of WCT persisting for the next century is low without intervention to remove non-native fish. The use of piscicides, such as rotenone or antimycin, to eradicate these fish concerns fish managers and the public because of the loss of native fish during treatments. Fortunately, most studies have shown that impacts from these piscicides on aquatic communities are relatively short-term.

"Piscicides are a valuable tool to remove non-native fish," said Wildlife Conservation Society Ecologist Brad Shepard. "But where non-native and native fish co-exist in smaller streams, a potential alternative method, electrofishing, can be used to remove specific unwanted species, while reducing impacts on WCT or other native fish and macro-invertebrates."

To provide guidance on circumstances where this method may be a feasible option, the authors evaluated conditions and costs associated with using backpack electrofishing to remove Brook Trout from several Northern Rocky Mountain streams that also support WCT.

The scientists selected six study streams located throughout the upper Missouri River basin in Montana, recording stream parameters such as stream size, vegetation density, substrate, and more.

Trout populations within each treatment reach were isolated by fish barriers. The fish were shocked by a crew member wearing a backpack "shocker" using a wand anode while dragging a cable cathode. A second crewmember followed the shocker and netted the temporarily stunned fish. While the non-native species were removed, the native fish were returned.

Brook trout were successfully eradicated over a period of 4-8 years from four of six treatment sites that together totaled a distance of 10.8 km. The number of fish removed ranged from 1,627 in Staubach Creek to 7,936 in Muskrat Creek. Two other streams, Craver and Spring Creeks, contained dense willow and alder vegetation, and were excluded because of poor initial electrofishing efficiencies.

Other Findings:

  • Eradication of Brook Trout using electrofishing in the two smaller streams (where channel clearing was not required) cost about $3,500 to $5,500 per kilometer (about the cost of piscicide treatment). Where extensive clearing of the stream was necessary, as was the case with the more densely vegetated White Creek, electrofishing costs rose to $8,000 to $9,000 per kilometer.

     

  • The scientists found that multiple removal treatments within a shorter period of time (i.e. 3 or 4 years) was more effective than single annual treatments over a longer span (6 or more years).

     

  • The scientists took advantage of the fact that Brook Trout aggregate during winter and before and during their spawning in the fall. Focusing efforts on adult fish at these times reduced numbers of offspring in subsequent seasons.

     

  • Because trout select beaver pond habitats (where deposited silt makes wading dangerous and turbidity makes it difficult to see stunned fish), the authors say that treatment with piscicides is "probably the only viable alternative where large beaver ponds are present."

Overall, the scientists concluded that electrofishing was a viable method for eradicating Brook Trout in small streams and could be done in a period as short as three years if multiple removals were conducted each year. This is an attractive alternative particularly in situations where populations of native fish live in the same location as non-native fish as "electrofishing will allow for the preservation of the native fish."

Piscicides may be the only viable alternative for larger streams (>3m width), or in streams covered by dense woody vegetation or with beaver ponds where turbidity and cover make electrofishing difficult or impossible. The scientists noted that further studies would be necessary to determine if two crews working simultaneously could get the job done in larger streams.

Cost estimates in the comparison did not include barrier construction, environmental assessment, and public involvement costs because these activities are needed for any nonnative eradication effort. However, environmental assessment and public involvement costs would likely be higher for piscicide eradication projects.

###

"Factors Influencing Successful Eradication of Nonnative Brook trout from Four Small Rocky Mountain Streams Using Electrofishing" appears in the current edition of the North American Journal of Fisheries Management. Authors include: Bradley B. Shepard of the Wildlife Conservation Society, Montana State University and Montana Department of Fish, Wildlife and Parks; Lee M. Nelson of Montana Department of Fish,Wildlife and Parks; Mark L. Taper of Montana State University; and Alexander V. Zaleof the U.S. Geological Survey.

For further information on this story, or to talk with Brad Shepard, please contact Scott Smith at 718-220-3698 or email ssmith@wcs.org.

Wildlife Conservation Society (WCS)

MISSION: WCS saves wildlife and wild places worldwide through science, conservation action, education, and inspiring people to value nature. VISION: WCS envisions a world where wildlife thrives in healthy lands and seas, valued by societies that embrace and benefit from the diversity and integrity of life on earth. To achieve our mission, WCS, based at the Bronx Zoo, harnesses the power of its Global Conservation Program in more than 60 nations and in all the world's oceans and its five wildlife parks in New York City, visited by 4 million people annually. WCS combines its expertise in the field, zoos, and aquarium to achieve its conservation mission. Visit: http://www.wcs.org. Follow: @thewcs.

Scott Smith | Eurek Alert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>