Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic getting greener

11.06.2012
Recent years’ warming in the Arctic has caused local changes in vegetation, reveals new research by biologists from the University of Gothenburg, Sweden, and elsewhere published in the prestigious journals Nature Climate Change and Ecology Letters.
The results show that most plants in the Arctic have grown taller, and the proportion of bare ground has decreased. Above all, there has been an increase in evergreen shrubs.

“We’ve managed to link the vegetation changes observed at the different sites to the degree of local warming,” explains researcher and biologist Robert Björk from the University of Gothenburg.

Shrubs and plants more widespread
Comparisons show that the prevalence of vascular species, such as shrubs and plants, is increasing as temperatures rise. The degree of change depends on climate zone, soil moisture and the presence of permafrost.
Researchers working on the International Tundra Experiment (ITEX) have been gathering data for almost 30 years. By analysing changes in vegetation in 158 plant communities at 46 locations across the Arctic between 1980 and 2010, they have been able to identify a number of general trends.

“We’ve managed to show that the vegetation changes in our fixed plots are a result of local warming at numerous sites across the world’s tundra,” Robert Björk says.

Summer temperatures and soil moisture implicated
ITEX was started up in the USA in 1990 when agreement was reached on a joint manual with standardised protocols which have since been used throughout the Arctic.

“The response of different plant groups to rising temperatures often varied with summer ambient temperature, soil moisture content and experimental duration, with shrubs expanding with warming only where the ambient temperature was already high, and grasses expanding mostly in the coldest areas studied,” explains Ulf Molau, professor of plant ecology at the University of Gothenburg and for many years a member of the Intergovernmental Panel on Climate Change (IPCC).

Major changes
The results indicate strong regional variation in the response of tundra vegetation to rising temperatures.

“This means that particularly sensitive regions following the combined effects of long-term warming in the Arctic may see much greater changes than we have observed to date,” Ulf Molau says.

This is a timely insight now that Sweden, as chair of the Arctic Council in 2011-13, has prime responsibility for producing the Arctic Resilience Report. Experience from ITEX will also be used in the next IPCC assessment report in 2014.

Nature Climate Change: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1465.html

Ecology Letters: http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2011.01716.x/abstract

Bibliographic data:
Journal: Nature Climate Change: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1465.html
Authors: Sarah C. Elmendorf, Gregory H. R. Henry, Robert D. Hollister, Robert G. Björk, Noémie Boulanger-Lapointe, Elisabeth J. Cooper, Johannes H. C. Cornelissen, Thomas A. Day, Ellen Dorrepaal, Tatiana G. Elumeeva, Mike Gill, William A. Gould, John Harte, Annika Hofgaard, David R. Johnson, Jill F. Johnstone, Ingibjörg Svala Jónsdóttir, Janet C. Jorgenson, Kari Klanderud, Julia A. Klein, Saewan Koh, Gaku Kudo, Mark Lara, Esther Lévesque
Title: Plot-scale evidence of tundra vegetation change and links to recent summer warming

For more information, please contact:
Robert G. Björk, Department of Biological and Environmental Sciences, University of Gothenburg
Telehone +46 (0)31 786 3741, mobile: +46 (0)704 546541
E-mail: robert.bjork@gu.se
Personal webpage: http://www.bioenv.gu.se/personal/robert_bjork/

Professor Ulf Molau, Department of Biological and Environmental Sciences, University of Gothenburg
Telehone: +46 (0)31 786 2665 mobile: +46 (0)708 790539
E-mail: Ulf.Molau@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1465.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2011.01716.x/abstract

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>