Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arctic biodiversity under serious threat from climate change according to new report

Climate change caused by human activities is by far the worst threat to biodiversity in the Arctic

Unique and irreplaceable Arctic wildlife and landscapes are crucially at risk due to global warming caused by human activities according to the Arctic Biodiversity Assessment (ABA), a new report prepared by 253 scientists from 15 countries under the auspices of the Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council.

"An entire bio-climatic zone, the high Arctic, may disappear. Polar bears and the other highly adapted organisms cannot move further north, so they may go extinct. We risk losing several species forever," says Hans Meltofte of Aarhus University, chief scientist of the report.

From the iconic polar bear and elusive narwhal to the tiny Arctic flowers and lichens that paint the tundra in the summer months, the Arctic is home to a diversity of highly adapted animal, plant, fungal and microbial species. All told, there are more than 21,000 species.

Maintaining biodiversity in the Arctic is important for many reasons. For Arctic peoples, biodiversity is a vital part of their material and spiritual existence. Arctic fisheries and tourism have global importance and represent immense economic value. Millions of Arctic birds and mammals that migrate and connect the Arctic to virtually all parts of the globe are also at risk from climate change in the Arctic as well as from development and hunting in temperate and tropical areas. Marine and terrestrial ecosystems such as vast areas of lowland tundra, wetlands, mountains, extensive shallow ocean shelves, millennia-old ice shelves and huge seabird cliffs are characteristic to the Arctic. These are now at stake, according to the report.

"Climate change is by far the worst threat to Arctic biodiversity. Temperatures are expected to increase more in the Arctic compared to the global average, resulting in severe disruptions to Arctic biodiversity some of which are already visible," warns Meltofte.

A planetary increase of 2 °C, the worldwide agreed upon acceptable limit of warming, is projected to result in vastly more heating in the Arctic with anticipated temperature increases of 2.8-7.8 °C this century. Such dramatic changes will likely result in severe damage to Arctic biodiversity.

Climate change impacts are already visible in several parts of the Arctic. These include northward range expansions of many species, earlier snow melt, earlier sea ice break-up and melting permafrost together with development of new oceanic current patterns.

It is expected that climate change could shrink Arctic ecosystems on land, as northward moving changes are pressed against the boundary of the Arctic Ocean: the so called "Arctic squeeze". As a result, Arctic terrestrial ecosystems may disappear in many places, or only survive in alpine or island refuges.

Disappearing sea ice is affecting marine species, changing dynamics in the marine food web and productivities of the sea. Many unique species found only in the Arctic rely on this ice to hunt, rest, breed and/or escape predators.

Other key findings

• Generally speaking, overharvest is no longer a primary threat, although pressures on some populations remain a serious problem.

• A variety of contaminants have bioaccumulated in several Arctic predator species to levels that threaten the health and ability to reproduce of both animals and humans. However, it is not clear if this is affecting entire populations of species.

• Arctic habitats are among the least anthropogenic disturbed on Earth, and huge tracts of almost pristine tundra, mountain, freshwater and marine habitats still exist.

• Regionally, ocean bottom trawling, non-renewable resource development and other intensive forms of land use pose serious challenges to Arctic biodiversity.

• Pollution from oil spills at sites of oil and gas development and from oil transport is a serious local level threat particularly in coastal and marine ecosystems.

• Uptake of CO2 in sea water is more pronounced in the cold Arctic waters than elsewhere, and the resulting acidification of Arctic seas threaten calcifying organisms and maybe even fisheries.

• Shipping and resource development corridors are rapidly expanding and may dramatically increase the rate of introduction of alien species.

• There is an enormous deficit in our knowledge of species richness in many groups of organisms, and monitoring in the Arctic is lagging far behind that in other regions of the world.

• The multitude of changes in Arctic biodiversity – driven by climate and other anthropogenic stressors – will have profound effects on the living conditions of peoples in the Arctic.


Chief scientist and executive editor, senior advisor DSc. Hans Meltofte
Department of Bioscience and Arctic Research Centre, Aarhus University
Chief Scientist and executive editor of the ABA
Tel. +45 8715 8691
Mobile tel. +45 2988 9278

DSc. Hans Meltofte | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>