Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic biodiversity under serious threat from climate change according to new report

14.02.2014
Climate change caused by human activities is by far the worst threat to biodiversity in the Arctic

Unique and irreplaceable Arctic wildlife and landscapes are crucially at risk due to global warming caused by human activities according to the Arctic Biodiversity Assessment (ABA), a new report prepared by 253 scientists from 15 countries under the auspices of the Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council.

"An entire bio-climatic zone, the high Arctic, may disappear. Polar bears and the other highly adapted organisms cannot move further north, so they may go extinct. We risk losing several species forever," says Hans Meltofte of Aarhus University, chief scientist of the report.

From the iconic polar bear and elusive narwhal to the tiny Arctic flowers and lichens that paint the tundra in the summer months, the Arctic is home to a diversity of highly adapted animal, plant, fungal and microbial species. All told, there are more than 21,000 species.

Maintaining biodiversity in the Arctic is important for many reasons. For Arctic peoples, biodiversity is a vital part of their material and spiritual existence. Arctic fisheries and tourism have global importance and represent immense economic value. Millions of Arctic birds and mammals that migrate and connect the Arctic to virtually all parts of the globe are also at risk from climate change in the Arctic as well as from development and hunting in temperate and tropical areas. Marine and terrestrial ecosystems such as vast areas of lowland tundra, wetlands, mountains, extensive shallow ocean shelves, millennia-old ice shelves and huge seabird cliffs are characteristic to the Arctic. These are now at stake, according to the report.

"Climate change is by far the worst threat to Arctic biodiversity. Temperatures are expected to increase more in the Arctic compared to the global average, resulting in severe disruptions to Arctic biodiversity some of which are already visible," warns Meltofte.

A planetary increase of 2 °C, the worldwide agreed upon acceptable limit of warming, is projected to result in vastly more heating in the Arctic with anticipated temperature increases of 2.8-7.8 °C this century. Such dramatic changes will likely result in severe damage to Arctic biodiversity.

Climate change impacts are already visible in several parts of the Arctic. These include northward range expansions of many species, earlier snow melt, earlier sea ice break-up and melting permafrost together with development of new oceanic current patterns.

It is expected that climate change could shrink Arctic ecosystems on land, as northward moving changes are pressed against the boundary of the Arctic Ocean: the so called "Arctic squeeze". As a result, Arctic terrestrial ecosystems may disappear in many places, or only survive in alpine or island refuges.

Disappearing sea ice is affecting marine species, changing dynamics in the marine food web and productivities of the sea. Many unique species found only in the Arctic rely on this ice to hunt, rest, breed and/or escape predators.

Other key findings

• Generally speaking, overharvest is no longer a primary threat, although pressures on some populations remain a serious problem.

• A variety of contaminants have bioaccumulated in several Arctic predator species to levels that threaten the health and ability to reproduce of both animals and humans. However, it is not clear if this is affecting entire populations of species.

• Arctic habitats are among the least anthropogenic disturbed on Earth, and huge tracts of almost pristine tundra, mountain, freshwater and marine habitats still exist.

• Regionally, ocean bottom trawling, non-renewable resource development and other intensive forms of land use pose serious challenges to Arctic biodiversity.

• Pollution from oil spills at sites of oil and gas development and from oil transport is a serious local level threat particularly in coastal and marine ecosystems.

• Uptake of CO2 in sea water is more pronounced in the cold Arctic waters than elsewhere, and the resulting acidification of Arctic seas threaten calcifying organisms and maybe even fisheries.

• Shipping and resource development corridors are rapidly expanding and may dramatically increase the rate of introduction of alien species.

• There is an enormous deficit in our knowledge of species richness in many groups of organisms, and monitoring in the Arctic is lagging far behind that in other regions of the world.

• The multitude of changes in Arctic biodiversity – driven by climate and other anthropogenic stressors – will have profound effects on the living conditions of peoples in the Arctic.

Contact:

Chief scientist and executive editor, senior advisor DSc. Hans Meltofte
Department of Bioscience and Arctic Research Centre, Aarhus University
Chief Scientist and executive editor of the ABA
Tel. +45 8715 8691
Mobile tel. +45 2988 9278
Email: mel@dmu.dk

DSc. Hans Meltofte | EurekAlert!
Further information:
http://www.dmu.dk

More articles from Ecology, The Environment and Conservation:

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

Computational high-throughput screening finds hard magnets containing less rare earth elements

25.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>