Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach for risk screening of contaminated land

24.06.2013
Following a century of industrialisation, contaminated sites lie abandoned or underutilized all over the world. Now there is a rapid new approach for risk screening of each site, according to studies from the University of Gothenburg, Sweden.

Contaminated land is soil, groundwater or sediment that contains levels of contaminants so high that they exceed natural levels in the environment.

Decisions about remediating contaminated land are often based on risk estimates derived from generic guideline values. Guideline values are used at the screening stage of the risk assessment and have been developed to represent “safe” levels of these contaminants applicable over large geographical areas (usually countries).

These guideline values indicate what may be considered acceptable across the majority of sites. Guideline values more appropriate to specific sites can usually also be calculated. Levels of toxins in the soil exceeding the guideline values may entail risks to humans and the environment.

The simplified system, using general and even site-specific guideline values, may not always capture the true risk of contaminants at the site. Using guideline values can lead to overly conservative remedial decisions, resulting in costly clean-ups that may not be necessary.
The guideline values do not take into account the toxicity of the contaminant mixture or the bioavailability of the toxins, i.e. the extent to which they are taken up by plants or animals at the site. Bioavailability depends on a number of factors such as soil properties.

"One of the most important factors governing the bioavailability of many metals is the soil's pH. In acidic soils, these metals are generally more available to animals and plants. It is estimated that acidic soils cover 30% of the planet's ice-free land area," says Emily Chapman at the Department of Biological and Environmental Sciences.

Emily Chapman's research studies in Gothenburg and Wolfville (Canada) have shown that site-specific risk screening can be improved using a triad approach with tests in undisturbed soil samples from the contaminated site.

"We have developed a simple, rapid triad approach for ecological risk-screening of metal-contaminated acidic soils. It takes into account the contaminants' site-specific chemical properties, mixtures and toxicities. The effects of contaminants can also be distinguished by examining the activity of organisms in soil from the site," says Emily Chapman.

This approach can improve early risk estimates of metal-contaminated acidic soil and tell us more about the contaminants' true site-specific risks. More information also makes it easier to choose the right remediation technology and to determine when it is necessary to excavate the soil.

"The risk-screening approach developed in our research project could also be used for monitoring in-situ (on-site) remediation of acidic metal-contaminated soil" says Emily Chapman.

Thesis title: Ecological risk screening of metal (Pb and Zn) contaminated acidic soil using a triad approach.

Link to thesis: http://hdl.handle.net/22077/32687

Contact:
Emily Chapman, Dept of Biological and Environmental Sciences
Tel: +1 (902) 293 3147, emily.chapman@bioenv.gu.se

Göran Dave, Dept of Biological and Environmental Sciences
Tel: +46 31 786 3776, goran.dave@bioenv.gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>