Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach for risk screening of contaminated land

24.06.2013
Following a century of industrialisation, contaminated sites lie abandoned or underutilized all over the world. Now there is a rapid new approach for risk screening of each site, according to studies from the University of Gothenburg, Sweden.

Contaminated land is soil, groundwater or sediment that contains levels of contaminants so high that they exceed natural levels in the environment.

Decisions about remediating contaminated land are often based on risk estimates derived from generic guideline values. Guideline values are used at the screening stage of the risk assessment and have been developed to represent “safe” levels of these contaminants applicable over large geographical areas (usually countries).

These guideline values indicate what may be considered acceptable across the majority of sites. Guideline values more appropriate to specific sites can usually also be calculated. Levels of toxins in the soil exceeding the guideline values may entail risks to humans and the environment.

The simplified system, using general and even site-specific guideline values, may not always capture the true risk of contaminants at the site. Using guideline values can lead to overly conservative remedial decisions, resulting in costly clean-ups that may not be necessary.
The guideline values do not take into account the toxicity of the contaminant mixture or the bioavailability of the toxins, i.e. the extent to which they are taken up by plants or animals at the site. Bioavailability depends on a number of factors such as soil properties.

"One of the most important factors governing the bioavailability of many metals is the soil's pH. In acidic soils, these metals are generally more available to animals and plants. It is estimated that acidic soils cover 30% of the planet's ice-free land area," says Emily Chapman at the Department of Biological and Environmental Sciences.

Emily Chapman's research studies in Gothenburg and Wolfville (Canada) have shown that site-specific risk screening can be improved using a triad approach with tests in undisturbed soil samples from the contaminated site.

"We have developed a simple, rapid triad approach for ecological risk-screening of metal-contaminated acidic soils. It takes into account the contaminants' site-specific chemical properties, mixtures and toxicities. The effects of contaminants can also be distinguished by examining the activity of organisms in soil from the site," says Emily Chapman.

This approach can improve early risk estimates of metal-contaminated acidic soil and tell us more about the contaminants' true site-specific risks. More information also makes it easier to choose the right remediation technology and to determine when it is necessary to excavate the soil.

"The risk-screening approach developed in our research project could also be used for monitoring in-situ (on-site) remediation of acidic metal-contaminated soil" says Emily Chapman.

Thesis title: Ecological risk screening of metal (Pb and Zn) contaminated acidic soil using a triad approach.

Link to thesis: http://hdl.handle.net/22077/32687

Contact:
Emily Chapman, Dept of Biological and Environmental Sciences
Tel: +1 (902) 293 3147, emily.chapman@bioenv.gu.se

Göran Dave, Dept of Biological and Environmental Sciences
Tel: +46 31 786 3776, goran.dave@bioenv.gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>