Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants plant tomorrow's rainforest

18.03.2014

Tropical montane rain forests are highly threatened and their remnants are often surrounded by deforested landscapes.

For the regeneration of these degraded areas, seed dispersal of forest trees plays a crucial role but is still poorly understood. Most tree species are dispersed by birds and mammals, but also by ants.


Ants are attracted by the lipid-rich aril of Clusia seeds and move the seeds to safe microsites for germination. Picture: S. Gallegos

A study published today in the Journal of Ecology by a team from the LOEWE Biodiversity and Climate Research Centre and the University of Halle-Wittenberg proves the importance of this hitherto neglected ecosystem function for the restoration of montane rain forests. Ants promote the regeneration of these forests by dispersing seeds to safe sites for tree establishment.

The Yungas, a region on the eastern slopes of the Bolivian Andes near La Paz, are marked by elongated valleys with relicts of the original mountain rain forest. Due to land-use practices like slash-and-burn agriculture and the extension of coca plantations, the forests are highly fragmented. The forest relicts are surrounded by an open, largely degraded cultural landscape.

In this context, the team conducted experiments to find out to what extent ants contribute to the dispersal of a widespread, primarily bird-dispersed tree (Clusia trochiformis) and tested whether this ecosystem function may contribute to the restoration of deforested areas.
The red, lipid-rich aril, a fleshy pulp surrounding the seeds of Clusia, is highly attractive to many animals. Birds are the primary dispersers.

They feed on the nutritious part of the fruits, the fleshy aril, and defecate the seeds. Ants haul seeds, which have fallen to the ground, to their nests or leave them intact on their way. Research has already been conducted on the influence of this so-called secondary seed dispersal, but very little is known about its impact in degraded forest ecosystems. The study reveals that ants reduce seed predation by rodents and increase germination success – which confirms the importance of this ecosystem function for forest regeneration.

The study has been carried out in two 3,000 ha islands of natural mountain rain forest, which are surrounded by coca fields and degraded fallows, covered with fern and shrub vegetation. The microclimate in the deforested areas is characterized by harsh abiotic conditions that limit seed germination and recruitment, and hence inhibit the re-establishment of forest trees. The researchers deposited 1,440 Clusia seeds in 72 depots at six sites. At each site, they studied three habitat types: forest interior, degraded habitat close to the forest and degraded habitat far from the forest edge.

To quantify the effect of rodents in addition to the impact of ants, half of the depots where equipped with wire exclusion cages.

Well-concealed: ants reduce predation and increase germination

"Ants readily approached and hauled away about 60 percent of all seeds," says Silvia Gallegos, lead author of the study and a doctoral student at the Biodiversity and Climate Research Centre (BiK-F) and the University of Halle-Wittenberg. 48 hours and again one month after establishing the depots, the team searched for the seeds within a 2.5 meter radius. More than 80 percent of the seeds transported away could be relocated. In most cases, the ants removed the aril, which is a benefit for the plants, due to a lower risk of fungal infestation and a higher germination rate.

But there are more positive effects of ants: "Especially in the degraded habitats, we found that seeds which had been removed by ants were predated less often and germinated more frequently than the unmoved seeds," explains Dr. Matthias Schleuning, co-author and scientist at BiK-F. Quite often, the ants removed the seed aril only in their nests or on the way there – often leaving the seeds protected by the litter layer.

Under the leaf litter, the seeds were less likely to be detected by rodents or other seed predators and benefited from the humid conditions, favorable for germination. The effect in the deforested habitats was clearly visible: one month after the experiment had started, establishment of seedlings was about five times higher for dispersed than for non-dispersed seeds. Dispersal distance had a positive effect as well: The farther the ants had transported the seeds, the higher was the chance that Clusia seedlings had established.

Even more important services by ants in the future

Ants have a clearly positive impact on the dispersal and establishment of the investigated tree species. This is particularly relevant as other animal and plant species may follow the species that facilitates the establishment of others. "We may use our knowledge to stimulate the establishment of Clusia in degraded habitats and enhance the regeneration of deforested areas" says Silvia Gallegos. Due to the ecosystem service provided by ants in the degraded areas, a faster and sustainable establishment of tree seedlings like Clusia may be expected.

In the medium term, this will enhance living conditions for a number of other animal and plant species and accelerate the regeneration of the mountain rain forest ecosystem. Schleuning concludes: “Drought frequencies in the Andes are likely to increase in the future. Under this scenario, the dispersal function of ants may further increase in importance for the restoration of tropical mountain forests.”

Publication:
Gallegos, S. C., Hensen, I., & M. Schleuning: Secondary dispersal by ants pro-motes forest regeneration after deforestation. - Journal of Ecology, DOI 10.1111/1365-2745.12226

For further information please contact:
Dr. Matthias Schleuning
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1892
Matthias.Schleuning@senckenberg.de

Silvia Gallegos
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1887
silvia.gallegos@senckenberg.de

or

Dr. Julia Krohmer
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Transfer office
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de

Sabine Wendler | Senckenberg
Further information:
http://www.senckenberg.de

Further reports about: BiK-F Biodiversity Climate Senckenberg ants dispersal ecosystem effect forests germination habitat seeds species

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>