Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antibiotic contamination a threat to humans and the environment

Researchers from the University of Gothenburg, Sweden, spend August in Sisimiut on the west coast of Greenland studying the prevalence of antibiotic resistance and the effects of antibiotic emissions on communities of bacteria living in marine sediments. More specifically, they were investigating how communities of bacteria in sediment and clay on the seabed are affected by exposure to antibiotics.
“We know very little about what happens to antibiotics that end up in the ocean, but several substances can accumulate in sediments where biodegradation occurs extremely slowly,” says researcher Maria Granberg.

More than 10,000 tonnes of antibiotics are consumed in Europe each year, and 30-60% pass through animals and humans completely unchanged. The different substances then reach the ocean via hospitals, municipal sewage, fish farms and run-off from agriculture and landfills.

The research group from the University of Gothenburg are focusing on the potential effects of accumulating antibiotics in the seabed.

“Our aim is to document the sea’s natural microbial structure and function as well as resistance patterns, so that we can determine if and in what way things change as a result of human activity,” says Maria Granberg.

Greenland is home not only to areas of very clean water, the like of which just does not exist in Sweden, but also highly polluted water. As such, it is an excellent location for studying environmental impacts.

“Greenland has no sewage treatment whatsoever, which means that waste water from inhabited areas is discharged straight into the sea,” says Maria Granberg. “So Greenland is home to both very clean and very polluted waters, which is great for comparing environmentally pristine areas with polluted ones”

The soft sediments on the seabed act as a reservoir for hard-to-break-down substances that are released into the environment. Even substances that are not discharged directly into the sea gradually find their way there from the land and air via rainwater. This means that antibiotics can affect marine sediment ecosystems over a long period, with detrimental effects on natural marine communities of bacteria, among other things.

“The presence of antibiotics in the marine environment is worrying as it can result in widespread resistance to antibiotics in marine bacteria with unknown consequences for the spread of resistance genes to bacteria that can reach humans through the consumption of seafood and fish.”

The marine sediment bacteria being studied are also important from a global perspective as they metabolise both nitrogen and carbon, which are linked to both eutrophication and climate problems. A key aspect is also that resistance genes can be transferred between bacteria.

“We know very little about how antibiotics affect natural systems and how antibiotic resistance develops and spreads in these systems,” says Maria Granberg. “This knowledge is, however, vital if we are to identify the sources of, and understand, the mechanisms behind the development of antibiotic resistance, which constitutes a threat to both the functioning of ecosystems and human health.”

This year’s research trip was a collaboration between the Department of Biology and Environmental Sciences and the University of Gothenburg’s Sahlgrenska Academy, the Department of Arctic Technology at the Technical University of Denmark and the Research Station Agroscope Changins-Wädenswil in Switzerland.
Maria Granberg, +46 766 229 534,
Carl Johan Svensson, +46 702 999 569,

Helena Aaberg | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>