Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibacterial products fuel resistant bacteria in streams and rivers

20.09.2013
Studies in Chicago metro-area unveil concerning trends, urban sites most impacted

Triclosan – a synthetic antibacterial widely used in personal care products – is fueling the development of resistant bacteria in streams and rivers. So reports a new paper in the journal Environmental Science and Technology, which is the first to document triclosan resistance in a natural environment.

Invented for surgeons in the 1960s, triclosan slows or stops the growth of bacteria, fungi, and mildew. Currently, around half of liquid soaps contain the chemical, as well as toothpastes, deodorants, cosmetics, liquid cleansers, and detergents. Triclosan enters streams and rivers through domestic wastewater, leaky sewer infrastructure, and sewer overflows, with residues now common throughout the United States.

Emma Rosi-Marshall, one of the paper's authors and an aquatic ecologist at the Cary Institute of Ecosystem Studies in Millbrook, New York explains: "The bacterial resistance caused by triclosan has real environmental consequences. Not only does it disrupt aquatic life by changing native bacterial communities, but it's linked to the rise of resistant bacteria that could diminish the usefulness of important antibiotics."

With colleagues from Loyola University and the Illinois Sustainable Technology Center, Rosi-Marshall explored how bacteria living in stream and river sediments responded to triclosan in both natural and controlled settings. Field studies were conducted at three sites in the Chicago metropolitan region: urban North Shore Channel, suburban West Branch Dupage River, and rural Nippersink Creek.

Urbanization was correlated with a rise in both triclosan concentrations in sediments and the proportion of bottom-dwelling bacteria resistant to triclosan. A woodland creek had the lowest levels of triclosan-resistant bacteria, while a site on the North Shore Channel downstream of 25 combined sewer overflows had the highest levels.

Combined sewers deliver domestic sewage, industrial wastewater, and storm water to a regional treatment plant using a single pipe. Overflows occur when a pipe's capacity is exceeded, typically due to excessive runoff from high rainfall or snowmelt events. The result: untreated sewage flows directly into rivers and streams.

The research team found that combined sewer overflows that release untreated sewage are a major source of triclosan pollution in Chicago's North Shore Channel. In addition, their findings support past work that indicates sewage treatment plants can effectively remove triclosan from wastewater.

John Kelly of Loyola University Chicago, the paper's senior author, comments, "We detected much lower levels of triclosan at a site downstream of a sewage treatment facility as compared to a site downstream of combined sewer overflows. And we demonstrated a strong link between the presence of triclosan in the environment and the development of triclosan resistant bacteria."

Nearly 800 cities in the United States rely on combined sewer overflows, with the Environmental Protection Agency citing them as a major water pollution concern.

Artificial stream experiments conducted at Loyola University confirmed field findings that triclosan exposure triggers an increase in triclosan-resistant bacteria. In addition to the creation of these resistant bacteria, researchers also found a decrease in the diversity of benthic bacteria and a shift in the composition of bacterial communities. Most notable were a 6-fold increase in cyanobacteria and a dramatic die-off of algae.

Rosi-Marshall explains how these shifts could impact aquatic life, "Cyanobacteria are less nutritious than algae and can produce toxins. In triclosan-polluted streams and rivers, changes in microbial communities could negatively affect ecological function and animal communities."

The study is the latest in an ongoing effort to better understand the environmental and human health consequences of synthetic antimicrobials. Funding was provided by a grant from the Illinois Sustainable Technology Center.

Access the paper at: http://pubs.acs.org/doi/abs/10.1021/es401919k

Triclosan Exposure Increases Triclosan Resistance and Influences Taxonomic Composition of Benthic Bacterial Communities, Environ. Sci. Technol., 2013, 47 (15), pp 8923-8930

Authors:
Bradley Drury, Loyola University Chicago
John Scott, Illinois Sustainable Technology Center
Emma Rosi-Marshall, Cary Institute of Ecosystem Studies
John J. Kelly, Loyola University Chicago
The Cary Institute of Ecosystem Studies is a private, not-for-profit environmental research and education organization in Millbrook, N.Y. For thirty years, Cary Institute scientists have been investigating the complex interactions that govern the natural world. Their objective findings lead to more effective policy decisions and increased environmental literacy. Focal areas include air and water pollution, climate change, invasive species, and the ecological dimensions of infectious disease.

Lori Quillen | EurekAlert!
Further information:
http://www.caryinstitute.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>