Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic Climate: Short-Term Spikes, Long-Term Warming Linked to Tropical Pacific

14.08.2008
Dramatic year-to-year temperature swings and a century-long warming trend across West Antarctica are linked to conditions in the tropical Pacific Ocean, according to a new analysis of ice cores conducted by scientists at the National Center for Atmospheric Research (NCAR) and the University of Washington (UW).

The findings show the connection of the world's coldest continent to global warming, as well as to periodic events such as El Niño.

"As the tropics warm, so too will West Antarctica," says NCAR's David Schneider, who conducted the research with UW's Eric Steig. "These ice cores reveal that West Antarctica's climate is influenced by atmospheric and oceanic changes thousands of miles to the north."

The research appears this week in the online Early Edition of Proceedings of the National Academy of Sciences. The work was supported by the National Science Foundation, NCAR's sponsor.

Scientists are keenly interested in whether warming will destabilize the West Antarctic ice sheet over a period of decades or centuries. The ice sheet covers an area the size of Mexico, averages about 6,500 feet deep, and, if melted, would raise global sea levels by about 8 to 16 feet (2.5-5 meters).

Antarctica's climate is difficult to study, partly because there are few observations of this vast and remote region and partly because the cold, dry atmosphere is unlike that of the other six continents. Scientists previously determined that Antarctica overall probably warmed by about 0.4 degrees Fahrenheit (0.2 degrees Celsius) in the last century. But it has not been apparent until now that low-lying West Antarctica is more responsive to global warming trends than East Antarctica, where wind patterns have largely kept out comparatively warm air.

Schneider and Steig estimate that West Antarctica warmed about 1.6 degrees F (0.9 degrees C) over the 20th century. That is slightly more than the global average of about 1.3 degrees F (0.7 degrees C). Because of the large swings in annual temperature during the 1930s and 1940s, there is a considerable margin of uncertainty in the century-long estimate, says Schneider. He notes that there is increased confidence that warming has occurred since 1950, averaging about 0.8 degree F (0.4 degrees C) per decade.

The new set of cores analyzed by Schneider and Steig comes from a relatively snowy part of the continent. This provides enough detail for scientists to infer year-to-year temperature changes. The data show that the Antarctic climate is highly responsive to changes in the Pacific. For example, during a major El Niño event from 1939 to 1942, temperatures in West Antarctica rose by about 6 to 10 degrees F (3-6 degrees C), and then dropped by an estimated 9 to 13 degrees F (5-7 degrees C) over the next two years. El Niño is a periodic shift in air pressure accompanied by oceanic warming in the tropical Pacific.

Although the heart of El Niño's oceanic warming is in the tropical Pacific, it often fosters a circulation pattern that pushes relatively mild, moist air toward West Antarctica, where it can temporarily displace much colder air. As a result, West Antarctica has one of the world's most variable climates.

"These results help put Antarctica's recent climate trends into a global context," says Schneider.

Steig adds that while the influence of tropical climate on West Antarctica climate was not unknown, "these results are the first to demonstrate that we can unambiguously detect that influence in ice core records."

Ice-core analysis is critical for understanding the climate of West Antarctica. Few weather stations existed before the 1950s, and even satellite readings can be unreliable because of the difficulty in distinguishing clouds from snow cover.

To reconstruct climate trends over the last century, Schneider and Steig analyzed ice cores collected from eight locations across West Antarctica. They measured heavy and light stable isotopes of oxygen and hydrogen, the elements that make up the ice itself. During warm episodes, the heavy isotopes are more common because of a number of processes, such as a reduction in condensation that would otherwise remove them.

The ice cores for the study were collected from 2000 to 2002 during the U.S. International Trans-Antarctic Scientific Expedition, which Schneider and Steig participated in. The expedition and subsequent ice core analysis was sponsored by the National Science Foundation's Office of Polar Programs

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

To download a high-resolution graphic illustrating this research, go to http://www.ucar.edu/news/releases/2008/antarcticwarming.jsp

About the article:

Title
Ice cores record significant 1940s Antarctic warmth related to tropical climate variability
Authors
David Schneider and Eric Steig
Publication
Proceedings of the National Academy of Sciences

David Hosansky | alfa
Further information:
http://www.ucar.edu
http://www.ucar.edu/news/releases/2008/antarcticwarming.jsp

Further reports about: Antarctic Antarctic ice Atmospheric Climate El Niño global warming ice cores ice sheet

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>