Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient environment found to drive marine biodiversity

25.11.2011
Much of our knowledge about past life has come from the fossil record – but how accurately does that reflect the true history and drivers of biodiversity on Earth?

"It's a question that goes back a long way to the time of Darwin, who looked at the fossil record and tried to understand what it tells us about the history of life," says Shanan Peters, an assistant professor of geoscience at the University of Wisconsin–Madison.

In fact, the fossil record can tell us a great deal, he says in a new study. In a report published Friday, Nov. 25 in Science magazine, he and colleague Bjarte Hannisdal, of the University of Bergen in Norway, show that the evolution of marine life over the past 500 million years has been robustly and independently driven by both ocean chemistry and sea level changes.

The time period studied covered most of the Phanerozoic eon, which extends to the present and includes the evolution of most plant and animal life.

Hannisdal and Peters analyzed fossil data from the Paleobiology Database (http://paleodb.org) along with paleoenvironmental proxy records and data on the rock record that link to ancient global climates, tectonic movement, continental flooding, and changes in biogeochemistry, particularly with respect to oxygen, carbon, and sulfur cycles. They used a method called information transfer that allowed them to identify causal relationships – not just general associations – between diversity and environmental proxy records.

"We find an interesting web of connections between these different systems that combine to drive what we see in the fossil record," Peters says. "Genus diversity carries a very direct and strong signal of the sulfur isotopic signal. Similarly, the signal from sea level, how much the continents are covered by shallow seas, independently propagates into the history of marine animal diversity."

The dramatic changes in biodiversity seen in the fossil record at many different timescales – including both proliferations and mass extinctions as marine animals diversified, evolved, and moved onto land – likely arose through biological responses to changes in the global carbon and sulfur cycles and sea level through geologic time.

The strength of the interactions also shows that the fossil record, despite its incompleteness and the influence of sampling, is a good representation of marine biodiversity over the past half-billion years.

"These results show that the number of species in the oceans through time has been influenced by the amount and availability of carbon, oxygen and sulfur, and by sea level," says Lisa Boush, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "The study allows us to better understand how modern changes in the environment might affect biodiversity today and in the future."

Peters says the findings also emphasize the interconnectedness of physical, chemical, and biological processes on Earth.

"Earth systems are all connected. It's important to realize that because when we perturb one thing, we're not just affecting that one thing. There are consequences throughout the whole Earth system," he says. "The challenge is understanding how perturbation of one thing – for example, the carbon cycle – will eventually affect the future biodiversity of the planet."

-- Jill Sakai, (608) 262-9772, jasakai@wisc.edu

Shanan Peters | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>