Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Drought and Rapid Cooling Drastically Altered Climate

22.06.2009
Two abrupt and drastic climate events, 700 years apart and more than 45 centuries ago, are teasing scientists who are now trying to use ancient records to predict future world climate.

The events - one, a massive, long-lived drought believed to have dried large portions of Africa and Asia, and the other, a rapid cooling that accelerated the growth of tropical glaciers - left signals in ice cores and other geologic records from around the world.

Lonnie Thompson, University Distinguished Professor of Earth Sciences at Ohio State University, and researcher with the Byrd Polar Research Center there, outlined the puzzle June 18 to colleagues at the Chapman Conference on Abrupt Climate Change. The meeting was sponsored by the American Geophysical Union and the National Science Foundation.

Thompson, who has led more than 50 expeditions to drill cores through ice caps on some the highest and most remote regions of the planet, believes that the records from the tropical zones on Earth are the most revealing and that the last 1,000 years provides the best clues.

"I would argue that the last 1,000 years are most critical from the perspective of looking at the future," he said

The first of the two tantalizing events is apparent in an ice core drilled in 1993 from an ice field in the Peruvian Andes called Huascaran. Within that core, they found a thick band of dust particles, most smaller than a micron in diameter, the concentration of which was perhaps 150 times greater than anywhere else in the core. That band dated back TO 4,500 years ago.

"Dust that small can be transported great distance - the question is where did it come from?" Thompson said. "I believe that record accurately reflects drought conditions in Africa and the Middle East and that the dust was carried out across the Atlantic Ocean by the northeast trade winds, across the Amazon Basin and deposited on the Huascaran ice cap.

Thompson said that other records, including an ice core taken from glaciers atop Tanzania's Mount Kilimanjaro, also show a dust event dating to a time when there was substantive drying up of lakes in Africa. He said that it is the only such huge event that the ice core records show for the past 17,000 years.

The other mystery surrounds a major cooling event that Thompson believes happened about 700 years earlier. During a 2002 expedition to the Quelccaya ice cap in Peru, the largest tropical ice field in the world, Thompson and colleagues discovered patches of ancient wetland plants that had been exposed as the edge of the ice cap retreated. When carbon-dated, the plants were shown to be 5,200 years old, meaning that they had been covered, and preserved, by the ice for the last 52 centuries.

Since then, recent expeditions have located similar patches of plants revealed by the ice's retreat. All date back to at least 5,200 years ago and some as much as 7,000 years ago.

"This means that sometime around 5,200 years ago, there was a rapid cooling event in this region and the ice expanded shielding the plants from damage and decay," Thompson said.

Other records from around the world seem to support the idea of a cooling event at this time. Divers in Lake Tahoe, Nevada, found nearly two dozen ancient tree trunks preserved at the lake's bottom. Wood samples from the trunks date back 5,200 years and geologic records show the current lake levels have remained steady since that point in time.

Thompson also pointed to the timing of past climate changes in South America and the rise and fall of early cultures in the region.

Evidence from the ice cores from Quelccaya suggest that cultures might have grown during wet periods in the Peruvian Highlands and waned when the climate became drier. Conversely, cultures appeared to grow in the country's coastal regions when the climate became wetter and were lost as drying increased.

"This suggests that there could have been persistent climate periods that allowed these cultures to flourish under certain conditions and fail under others," he said.

Thompson leads a new expedition next week to two new sites in the Andes in hopes of drilling cores that will show more detailed records of both events.

The evidence that researchers have, both from ice cores and from the rapid retreat of glaciers, show that high-altitude ice fields reflect similar changes that are currently visible all across the temperate portions of the globe.

"The ice caps are sentinels of the earth's overall climate," he said. "And the data shows that at all of these sites, the rate at which the ice is vanishing is accelerating.

"To me, these are indicators that these areas are already being adversely impacted by changes in our current climate."

Contact: Lonnnie Thompson, (614) 292-6652: Thompson.3@osu.edu

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>