Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ancient Biosonar Sheds New Light on the Evolution of Echolocation in Toothed Whales

05.04.2013
Some thirty million years ago, Ganges river dolphins diverged from other toothed whales, making them one of the oldest species of aquatic mammals that use echolocation, or biosonar, to navigate and find food. This also makes them ideal subjects for scientists working to understand the evolution of echolocation among toothed whales.
New research, led by Frants Havmand Jensen, a Danish Council for Independent Research | Natural Sciences postdoctoral fellow at Woods Hole Oceanographic Institution, shows that freshwater dolphins produce echolocation signals at very low sound intensities compared to marine dolphins, and that Ganges river dolphins echolocate at surprisingly low sound frequencies. The study, "Clicking in shallow rivers," was published in the journal PLOS ONE.

“Ganges River dolphins are one of the most ancient evolutionary branches of toothed whales,” says Jensen. “We believe our findings help explain the differences in echolocation between freshwater and marine dolphins. Our findings imply that the sound intensity and frequency of Ganges river dolphin may have been closer to the ‘starting point‘ from which marine dolphins gradually evolved their high-frequent, powerful biosonar.”

The scientists believe these differences evolved due to differences in freshwater and marine environments and the location and distribution of prey in those environments.

A complex, underwater environment

To sustain themselves, river dolphins must find their food, often small fish or crustaceans, in highly turbid water where visibility seldom exceeds a few inches. Like their marine relatives, they manage this using echolocation: They continuously emit sound pulses into the environment and listen for the faint echoes reflected off obstacles while paying special attention to the small details in the echoes that might signify a possible meal.

The environment that freshwater dolphins operate in poses very different challenges to a biosonar than the vast expanses of the sea where most dolphins later evolved. “Dolphins that range through the open ocean often feed on patchily distributed prey, such as schools of fish,” Jensen says. “They have had a large advantage from evolving an intense biosonar that would help them detect prey over long distances, but we have little idea of how the complex river habitats of freshwater dolphins shape their biosonar signals.”

Shy study animals with a surprisingly deep voice

To answer that question, the researchers recorded the echolocation signals of two species of toothed whales inhabiting the same mangrove forest in the southern part of Bangladesh: The Ganges river dolphin, an exclusively riverine species that is actually not part of the dolphin family but rather the Platanistidae family, and the Irrawaddy, a freshwater toothed whale from the dolphin family that lives in both coastal and riverine habitats.

Surprisingly, the echolocation signals turned out to be much less intense than those employed by marine dolphins of similar size and it seemed that the freshwater dolphins were looking for prey at much shorter distances. From this, the researchers surmise that both the dolphin species and the river dolphin were echolocating at short range due to the complex and circuitous river system that they were foraging in.

While both Irawaddy and Ganges river dolphin produced lower intensity biosonar, the Ganges river dolphin had an unexpectedly low frequency biosonar, nearly half as high as expected if this species had been a marine dolphin.

”It is very surprising to see these animals produce such low-frequent biosonar sounds. We are talking about a small toothed whale the size of a porpoise producing sounds that would be more typical for a killer whale or a large pilot whale,” says Professor Peter Teglberg Madsen from Aarhus University in Denmark, an expert on toothed whale biosonar and co-author of the study.

A new perspective on the evolution of biosonar

The study suggests that echolocation in toothed whales initially evolved as a short, broadband and low-frequent click. As dolphins and other toothed whales evolved in the open ocean, the need to detect schools of fish or other prey items quickly favored a long-distance biosonar system. As animals gradually evolved to produce and to hear higher sound frequencies, the biosonar beam became more focused and the toothed whales were able to detect prey further away.

However, the Ganges river dolphin separated from other toothed whales early throughout this evolutionary process, adapting to a life in shallow, winding river systems where a high-frequency, long-distance sonar system may have been less important than other factors such as high maneuverability or the flexible neck that helps these animals capture prey at close range or hiding within mangrove roots or similar obstructions.

Improved tools for counting animals

Freshwater dolphins are among the most endangered animal species. Only around a thousand Ganges river dolphins are thought to remain, and they inhabit some of the most polluted and overfished river systems on Earth. The results of this study will help provide local collaborators with a new tool in their struggle to conserve these highly threatened freshwater cetaceans. Using acoustic monitoring devices to identify the local species may help researchers estimate how many animals remain, and to identify what areas are most important to them.

Dr. Frants Havmand Jensen is funded by an Individual Postdoctoral Fellowship and a Sapere Aude award from the Danish Council for Independent Research | Natural Sciences.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.

Originally published: April 3, 2013

Press Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>