Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ancient Biosonar Sheds New Light on the Evolution of Echolocation in Toothed Whales

05.04.2013
Some thirty million years ago, Ganges river dolphins diverged from other toothed whales, making them one of the oldest species of aquatic mammals that use echolocation, or biosonar, to navigate and find food. This also makes them ideal subjects for scientists working to understand the evolution of echolocation among toothed whales.
New research, led by Frants Havmand Jensen, a Danish Council for Independent Research | Natural Sciences postdoctoral fellow at Woods Hole Oceanographic Institution, shows that freshwater dolphins produce echolocation signals at very low sound intensities compared to marine dolphins, and that Ganges river dolphins echolocate at surprisingly low sound frequencies. The study, "Clicking in shallow rivers," was published in the journal PLOS ONE.

“Ganges River dolphins are one of the most ancient evolutionary branches of toothed whales,” says Jensen. “We believe our findings help explain the differences in echolocation between freshwater and marine dolphins. Our findings imply that the sound intensity and frequency of Ganges river dolphin may have been closer to the ‘starting point‘ from which marine dolphins gradually evolved their high-frequent, powerful biosonar.”

The scientists believe these differences evolved due to differences in freshwater and marine environments and the location and distribution of prey in those environments.

A complex, underwater environment

To sustain themselves, river dolphins must find their food, often small fish or crustaceans, in highly turbid water where visibility seldom exceeds a few inches. Like their marine relatives, they manage this using echolocation: They continuously emit sound pulses into the environment and listen for the faint echoes reflected off obstacles while paying special attention to the small details in the echoes that might signify a possible meal.

The environment that freshwater dolphins operate in poses very different challenges to a biosonar than the vast expanses of the sea where most dolphins later evolved. “Dolphins that range through the open ocean often feed on patchily distributed prey, such as schools of fish,” Jensen says. “They have had a large advantage from evolving an intense biosonar that would help them detect prey over long distances, but we have little idea of how the complex river habitats of freshwater dolphins shape their biosonar signals.”

Shy study animals with a surprisingly deep voice

To answer that question, the researchers recorded the echolocation signals of two species of toothed whales inhabiting the same mangrove forest in the southern part of Bangladesh: The Ganges river dolphin, an exclusively riverine species that is actually not part of the dolphin family but rather the Platanistidae family, and the Irrawaddy, a freshwater toothed whale from the dolphin family that lives in both coastal and riverine habitats.

Surprisingly, the echolocation signals turned out to be much less intense than those employed by marine dolphins of similar size and it seemed that the freshwater dolphins were looking for prey at much shorter distances. From this, the researchers surmise that both the dolphin species and the river dolphin were echolocating at short range due to the complex and circuitous river system that they were foraging in.

While both Irawaddy and Ganges river dolphin produced lower intensity biosonar, the Ganges river dolphin had an unexpectedly low frequency biosonar, nearly half as high as expected if this species had been a marine dolphin.

”It is very surprising to see these animals produce such low-frequent biosonar sounds. We are talking about a small toothed whale the size of a porpoise producing sounds that would be more typical for a killer whale or a large pilot whale,” says Professor Peter Teglberg Madsen from Aarhus University in Denmark, an expert on toothed whale biosonar and co-author of the study.

A new perspective on the evolution of biosonar

The study suggests that echolocation in toothed whales initially evolved as a short, broadband and low-frequent click. As dolphins and other toothed whales evolved in the open ocean, the need to detect schools of fish or other prey items quickly favored a long-distance biosonar system. As animals gradually evolved to produce and to hear higher sound frequencies, the biosonar beam became more focused and the toothed whales were able to detect prey further away.

However, the Ganges river dolphin separated from other toothed whales early throughout this evolutionary process, adapting to a life in shallow, winding river systems where a high-frequency, long-distance sonar system may have been less important than other factors such as high maneuverability or the flexible neck that helps these animals capture prey at close range or hiding within mangrove roots or similar obstructions.

Improved tools for counting animals

Freshwater dolphins are among the most endangered animal species. Only around a thousand Ganges river dolphins are thought to remain, and they inhabit some of the most polluted and overfished river systems on Earth. The results of this study will help provide local collaborators with a new tool in their struggle to conserve these highly threatened freshwater cetaceans. Using acoustic monitoring devices to identify the local species may help researchers estimate how many animals remain, and to identify what areas are most important to them.

Dr. Frants Havmand Jensen is funded by an Individual Postdoctoral Fellowship and a Sapere Aude award from the Danish Council for Independent Research | Natural Sciences.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.

Originally published: April 3, 2013

Press Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>