Analysis of evolution of the Spanish electricity sector

These are the conclusions of a team of scientists from the Institute for Research in Technology (IIT) of the University of Pontificia Comillas in Madrid, who have studied how the Spanish electricity sector would evolve in various scenarios.

The team headed by Pedro Linares, an industrial electrical engineer and a researcher at the IIT, studied the evolution of the Spanish electricity sector by simulating four different scenarios, to which they applied various industrial measures and policies that could currently be undertaken in order to achieve sustainability in the system.

“The electricity sector is responsible for a large part of total CO2 emissions – approximately 25% of the 370 million tonnes that we currently discharge into the atmosphere,” Linares tells SINC.

According to the study, which has been published in the British magazine Energy Policy, total emissions (which include CO2 and other greenhouse gases) are 63% higher than in 1990. “Our 2012 commitment under the Kyoto Protocol is to emit only 15% more than in 1990. In other words, we are a long way off being able to fulfil this objective,” says the engineer.

Electric energy in Spain today is produced primarily in thermoelectric, nuclear and hydroelectric power stations. Renewable energies, however, continue to play only a minor role (in 2005 they accounted for only 7% of total production), and development of renewables is also far off the 12% target set in the Renewable Energies Plan for 2005-2010.

Reducing consumption to achieve sustainability

The four scenarios covered by this research take various aspects of the problem into consideration – growth in demand, conventional technologies, renewable sources being used now and in the future (biomass, mini-hydraulics, wind and solar thermal), investment capacity and the CO2 emissions market, as well as the directives issued under the National Plan on emissions reductions for large combustion facilities (approved in 2007).

For example, in the BAU (business as usual) model – where demand for electricity, domestic production and CO2 emissions continue growing at the same rate as they have to date – the simulations predict that emissions by 2020 will have doubled compared to 1990 levels, and electricity sector dependency will reach 60%.

However, the results obtained by using the three other models – PS1 (power shift), PS2 and PS2n – are rather more optimistic. The PS2n model, for example, sees demand for nuclear energy falling by 50% by 2020. The three scenarios take into account policies for energy promotion and savings and the development of renewables, which would entail an increase in emission permit prices. In the PS2 and PS2n scenarios, the results point at emissions in 2020 being 37% lower than they were in 1990.

This study has made it possible to identify the elements required for change to take place, in terms of demand being reduced and, to a lesser extent, premiums being used to increase the availability and competitiveness of renewable energies.

“The potential of renewables and the prices of emissions permits are fairly realistic assumptions, even for the PS2 scenario,” Linares points out. “Unfortunately, the increase in premiums and restraints on the growth of demand are not, and not because they are unmeasurable concepts,” he adds, “but rather because these will require strong political will, and it is not clear that this exists.”

Media Contact

SINC Team alfa

More Information:

http://www.plataformasinc.es

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors