Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibians as environmental omen disputed

12.11.2009
Amphibians, for years considered a leading indicator of environmental degradation, are not uniquely susceptible to pollution, according to a meta-analysis to be published in Ecology Letters.

After a review of over 28,000 toxicological tests, researchers from the University of South Dakota, Yale University and Washington State University are challenging the prevailing view that amphibians, with their permeable skin and aquatic environment, are particularly sensitive to environmental threats and, as such, are "canaries," or predictors of environmental decline.

"The very simple message is that for most of the classes of chemical compounds we looked at, frogs range from being moderately susceptible to being bullet-proof," said David Skelly, professor of ecology at the Yale School of Forestry & Environmental Studies and a member of the research team. "There are lots of other kinds of environmental threats that have led to their decline, including habitat conversion, harvesting for food and the global spread of the Chytrid fungus, which is mowing down these species in its path."

The team, led by Jacob Kerby, an assistant professor at the University of South Dakota, based its analysis on information gleaned from the Environmental Protection Agency's (EPA) Aquatic Toxicity Information Retrieval database, examining 1,279 species, among them segmented worms, fish, bivalves such as clams, insects and snails. Those species were exposed in water to various concentrations of 107 chemical agents, including inorganic chemicals, pesticides, heavy metals and phenols, a class of chemical compound.

"What our results suggest is that all animals are susceptible to chemical stressors and that amphibians are potentially good indicators," said Kerby. "There isn't any evidence that they're a uniquely leading indicator. We tried to be comprehensive in the types of chemicals and organisms that we examined."

In light of the findings, Skelly said, scientists should evaluate the absence, presence or abundance of amphibians in wild populations as "signals" of potential exposure to different chemicals in the environment. "If we have such an understanding for several species, we may be able to use their responses, collectively, as a means of narrowing potential causes of environmental degradation," he said.

The EPA, according to the paper, uses African Clawed Frogs as a proxy for biological diversity when determining a species' sensitivity to chemical exposures, even though that particular species does not occur naturally in North America. "Our knowledge of amphibians' sensitivity to particular chemicals or classes of chemicals has not been used to design assays for effects in nature," Skelly said.

The paper is titled "An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?"

David DeFusco | EurekAlert!
Further information:
http://www.yale.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>