Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the Amazon rainforest to human body cells: quantifying stability

07.01.2013
The Amazon rainforest, energy grids, and cells in the human body share a troublesome property: they possess multiple stable states.

When the world’s largest tropical forest suddenly starts retreating in a warming climate, energy supply blacks out, or cells turn carcinogenic, complex-systems science understands this as a transition between two such states.

These transitions are obviously unwanted. As they typically result from severe external perturbations, it is of vital interest how stable the most desirable state is. Surprisingly, this basic question has so far received little attention.

Now scientists of the Potsdam Institute for Climate Impact Research (PIK), in a paper published in Nature Physics, propose a new concept for quantifying stability.

“Up to now, science was able to say if a complex system is stable or not, but it wasn’t able to properly say how stable it is,” says Peter J. Menck, lead author of the paper. The proposed concept is the first to fill this gap. “We conceive a system's alternative states as points in a mountainous landscape with steep rocks and deep valleys,” explains Menck. “In the sinks between the peaks, a system comes to rest like a rolling ball would. Now the likelihood that the system returns to a specific sink after suffering a severe blow strongly depends on how big the surrounding valley is.” In the high-dimensional systems Menck and his colleagues study, the equivalent of the valley is called the basin of attraction. The basin's volume is the measure the authors suggest to use for the quantification of stability.

Getting the actual data still is a challenge

The authors envision the new concept to become a powerful tool for complex systems studies, including the assessment of climatic tipping elements like the Amazon rainforest. Under unabated global warming, this ecosystem might change from its present fertile forest state to a much drier savanna state. Such a transition would destroy one of the planet’s most important CO2 sinks, thus contributing to further climate change. “Amazonian bistability arises from a positive feedback: Deep-rooting trees take up water and transpire it to the atmosphere” Menck says. Forest cover in the region increases overall rainfall and thereby improves its own growing conditions. If the forest cover gets pushed below a certain threshold, this mechanism doesn’t work any more – the rainforest would die.

The “basin stability concept” is apt for quantifying this risk. However, it is critical to actually do this from measured data. “Other researchers recently have collected the characteristics in terms of precipitation, temperature, soil of rainforests and savannas under defined climatological conditions,” Menck says. Still, the assessment is extremely challenging as the tipping of a forest is a rare event, so observation data is scarce. In contrast, observation data of human cells changing from a healthy state to cancer can be abundant. “So medical researchers told us that our concept could be quite helpful in better assessing the risk of sane cells to turning sick when disturbed by specific exogenous factors.”

“Simple yet compelling – that’s the way fundamental physics looks like”

Power grids have to function in good synchronization to assure that lights can be switched on everywhere anytime. Previous theory suggested that this should most easily be achieved if power grids had what researchers call a random structure, which in fact would yield many short-cuts between distant nodes. Yet in reality, grids look far more regular. Applying the basin stability concept shows why that is: In more regular grids, the desired synchronous state possesses a far bigger ‘basin’, hence is much more stable against perturbations.

“The basin stability’s applicability to high-dimensional systems allowed us to solve a puzzle that has long haunted complex network science,” says Jürgen Kurths, a co-author of the paper and co-chair of PIK’s research domain ‘Transdisciplinary concepts and methods’. ”Our new nonlinear approach jumps from a local to a whole system analysis, thus complementing previous research mostly based on linearization. This new concept is simple, yet compelling – that´s the way fundamental physics looks like.”

Article: Menck, P.J., Heitzig, J., Marwan, N., Kurths, J. (2013): How basin stability complements the linear-stability paradigm. Nature Physics (advance online publication) [doi:10.1038/NPHYS2516]

Weblink to the article once it's published: http://dx.doi.org/10.1038/NPHYS2516
For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://dx.doi.org/10.1038/NPHYS2516

More articles from Ecology, The Environment and Conservation:

nachricht Species may appear deceptively resilient to climate change
24.11.2017 | University of California - Davis

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>