Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the Amazon rainforest to human body cells: quantifying stability

07.01.2013
The Amazon rainforest, energy grids, and cells in the human body share a troublesome property: they possess multiple stable states.

When the world’s largest tropical forest suddenly starts retreating in a warming climate, energy supply blacks out, or cells turn carcinogenic, complex-systems science understands this as a transition between two such states.

These transitions are obviously unwanted. As they typically result from severe external perturbations, it is of vital interest how stable the most desirable state is. Surprisingly, this basic question has so far received little attention.

Now scientists of the Potsdam Institute for Climate Impact Research (PIK), in a paper published in Nature Physics, propose a new concept for quantifying stability.

“Up to now, science was able to say if a complex system is stable or not, but it wasn’t able to properly say how stable it is,” says Peter J. Menck, lead author of the paper. The proposed concept is the first to fill this gap. “We conceive a system's alternative states as points in a mountainous landscape with steep rocks and deep valleys,” explains Menck. “In the sinks between the peaks, a system comes to rest like a rolling ball would. Now the likelihood that the system returns to a specific sink after suffering a severe blow strongly depends on how big the surrounding valley is.” In the high-dimensional systems Menck and his colleagues study, the equivalent of the valley is called the basin of attraction. The basin's volume is the measure the authors suggest to use for the quantification of stability.

Getting the actual data still is a challenge

The authors envision the new concept to become a powerful tool for complex systems studies, including the assessment of climatic tipping elements like the Amazon rainforest. Under unabated global warming, this ecosystem might change from its present fertile forest state to a much drier savanna state. Such a transition would destroy one of the planet’s most important CO2 sinks, thus contributing to further climate change. “Amazonian bistability arises from a positive feedback: Deep-rooting trees take up water and transpire it to the atmosphere” Menck says. Forest cover in the region increases overall rainfall and thereby improves its own growing conditions. If the forest cover gets pushed below a certain threshold, this mechanism doesn’t work any more – the rainforest would die.

The “basin stability concept” is apt for quantifying this risk. However, it is critical to actually do this from measured data. “Other researchers recently have collected the characteristics in terms of precipitation, temperature, soil of rainforests and savannas under defined climatological conditions,” Menck says. Still, the assessment is extremely challenging as the tipping of a forest is a rare event, so observation data is scarce. In contrast, observation data of human cells changing from a healthy state to cancer can be abundant. “So medical researchers told us that our concept could be quite helpful in better assessing the risk of sane cells to turning sick when disturbed by specific exogenous factors.”

“Simple yet compelling – that’s the way fundamental physics looks like”

Power grids have to function in good synchronization to assure that lights can be switched on everywhere anytime. Previous theory suggested that this should most easily be achieved if power grids had what researchers call a random structure, which in fact would yield many short-cuts between distant nodes. Yet in reality, grids look far more regular. Applying the basin stability concept shows why that is: In more regular grids, the desired synchronous state possesses a far bigger ‘basin’, hence is much more stable against perturbations.

“The basin stability’s applicability to high-dimensional systems allowed us to solve a puzzle that has long haunted complex network science,” says Jürgen Kurths, a co-author of the paper and co-chair of PIK’s research domain ‘Transdisciplinary concepts and methods’. ”Our new nonlinear approach jumps from a local to a whole system analysis, thus complementing previous research mostly based on linearization. This new concept is simple, yet compelling – that´s the way fundamental physics looks like.”

Article: Menck, P.J., Heitzig, J., Marwan, N., Kurths, J. (2013): How basin stability complements the linear-stability paradigm. Nature Physics (advance online publication) [doi:10.1038/NPHYS2516]

Weblink to the article once it's published: http://dx.doi.org/10.1038/NPHYS2516
For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://dx.doi.org/10.1038/NPHYS2516

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>