Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon conservation policy working in Brazil

17.06.2009
Contrary to common belief, Brazil's policy of protecting portions of the Amazonian forest from development is capable of buffering the Amazon from climate change, according to a new study led by Michigan State University researchers.

The study, to be published in the Proceedings of the National Academy of Sciences, contends state and federal governments in Brazil have created a sustainable core of protected areas within the Amazon. And even if the remaining Brazilian Amazon is deforested, the climate will not significantly change – thereby protecting the Amazon's ecosystems.

"The thought has been that if you deforest up to a certain point in the Amazon, the forest will completely lose the ability to recover its tropical vegetation – that you will basically convert it to a desert, especially in the south and southeastern margins of the basin," said Robert Walker, MSU professor of geography and lead researcher on the project.

"But our research shows that if you protect certain areas of the Amazon, as the Brazilian government is currently doing, the forest will not reach a tipping point, which means we can maintain the climate with levels of deforestation beyond which was originally thought."

Roughly the size of the 48 contiguous states, the Amazon River Basin is home to the world's largest rainforest, most of it in Brazil, and is the largest freshwater source on Earth. The Amazon is made up of a wide variety of exotic plant and animal life, including macaws, jaguars, anteaters and anacondas.

In Brazil, the government has set aside about 37 percent of the Amazon basin as protected area, Walker said.

Meanwhile, about 17 percent of the Brazilian Amazon has been deforested since the opening of the basin to development in the mid-1960s, he said.

Critics warn the Amazon is close to a tipping point in which the continued stripping of forests will stem rainfall and turn the tropical region into scrubland. Because trees pull moisture from the ground and release it back into the atmosphere, leading to rainfall, cutting them down threatens this "vegetative recycling" process, Walker said.

Walker and fellow researchers from Brazil and the United States conducted three years of atmospheric computer modeling on the region. Their study assumed the worst-case scenario – that all of the Brazilian Amazon not protected by the government would be deforested.

Even under this scenario, their findings indicate rainfall levels would not decrease to the point of changing the landscape and harming the ecosystems within the protected areas.

"Some people think the tipping point is going to occur at 30 percent to 40 percent deforestation," Walker said. "Our results suggest this is not the case; that you can have quite a bit of deforestation – perhaps up to 60 percent – before you get to the crash point."

The study also assumes the government-protected forests would not be altered beyond their current condition.

The research was supported by a grant from NASA and conducted under the auspices of the Large-scale Biosphere/Atmosphere Experiment in Amazonia, an international project led by the Brazilian Ministry of Science and Technology.

Joining Walker on the research team were Nathan Moore, Cynthia Simmons and Dante Vergara from MSU, and researchers from the University of Florida, Kansas State University, Hobart and William Smith Colleges in New York and the Universidade Federal Fluminense in Brazil.

Andy Henion | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>