Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amazon conservation policy working in Brazil

Contrary to common belief, Brazil's policy of protecting portions of the Amazonian forest from development is capable of buffering the Amazon from climate change, according to a new study led by Michigan State University researchers.

The study, to be published in the Proceedings of the National Academy of Sciences, contends state and federal governments in Brazil have created a sustainable core of protected areas within the Amazon. And even if the remaining Brazilian Amazon is deforested, the climate will not significantly change – thereby protecting the Amazon's ecosystems.

"The thought has been that if you deforest up to a certain point in the Amazon, the forest will completely lose the ability to recover its tropical vegetation – that you will basically convert it to a desert, especially in the south and southeastern margins of the basin," said Robert Walker, MSU professor of geography and lead researcher on the project.

"But our research shows that if you protect certain areas of the Amazon, as the Brazilian government is currently doing, the forest will not reach a tipping point, which means we can maintain the climate with levels of deforestation beyond which was originally thought."

Roughly the size of the 48 contiguous states, the Amazon River Basin is home to the world's largest rainforest, most of it in Brazil, and is the largest freshwater source on Earth. The Amazon is made up of a wide variety of exotic plant and animal life, including macaws, jaguars, anteaters and anacondas.

In Brazil, the government has set aside about 37 percent of the Amazon basin as protected area, Walker said.

Meanwhile, about 17 percent of the Brazilian Amazon has been deforested since the opening of the basin to development in the mid-1960s, he said.

Critics warn the Amazon is close to a tipping point in which the continued stripping of forests will stem rainfall and turn the tropical region into scrubland. Because trees pull moisture from the ground and release it back into the atmosphere, leading to rainfall, cutting them down threatens this "vegetative recycling" process, Walker said.

Walker and fellow researchers from Brazil and the United States conducted three years of atmospheric computer modeling on the region. Their study assumed the worst-case scenario – that all of the Brazilian Amazon not protected by the government would be deforested.

Even under this scenario, their findings indicate rainfall levels would not decrease to the point of changing the landscape and harming the ecosystems within the protected areas.

"Some people think the tipping point is going to occur at 30 percent to 40 percent deforestation," Walker said. "Our results suggest this is not the case; that you can have quite a bit of deforestation – perhaps up to 60 percent – before you get to the crash point."

The study also assumes the government-protected forests would not be altered beyond their current condition.

The research was supported by a grant from NASA and conducted under the auspices of the Large-scale Biosphere/Atmosphere Experiment in Amazonia, an international project led by the Brazilian Ministry of Science and Technology.

Joining Walker on the research team were Nathan Moore, Cynthia Simmons and Dante Vergara from MSU, and researchers from the University of Florida, Kansas State University, Hobart and William Smith Colleges in New York and the Universidade Federal Fluminense in Brazil.

Andy Henion | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>