Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alfalfa sprouts key to discovering how meandering rivers form and maintain

08.10.2009
Researchers create first self-sustaining meander, proving role of bank strength, fine sediment

Sinuous, meandering streams produce diverse and wildlife-rich habitats and are the aim of many river restoration efforts, but until now, the bank, water flow and sediment conditions required to form and maintain meanders have been largely a matter of speculation.

No one has been able to experimentally create self-sustaining meanders in the lab, and numerous restored meanders have straightened out or turned into multi-channel "braided" rivers after the first flood.

Now, a University of California, Berkeley, study reports the first experimental creation of meanders in a flume – a scaled down representation of a natural channel using alfalfa sprouts to represent vegetated stream banks. These experiments reveal some of the necessary conditions for formation of meanders on Earth and throughout the solar system.

"The money spent nationally on stream restoration is expanding exponentially, yet we're fixing things faster than we can tell whether it's doing any good," said UC Berkeley graduate student Christian Braudrick, a former environmental consultant. "Our flume model will now let us do investigations that we can't do in the field but, until now, haven't been able to do in the lab, finally linking experiment with the geomorphology we see in nature."

Braudrick and William Dietrich, UC Berkeley professor of earth and planetary science, along with colleagues at San Francisco State University and Berkeley-based Stillwater Sciences, reported their results last week in the online early edition of the journal Proceedings of the National Academy of Sciences.

Snaking meanders like those characteristic of the lower Mississippi River are common along rivers and streams on Earth, as well as along now-dry channels on Mars and even on the frozen surface of Saturn's moon Titan. On Earth, they typically form in low-sloping valleys where, over the years, they wander across their floodplain, creating new floodplain deposits and leaving behind tree-lined sloughs, chutes and oxbow lakes that team with fish, birds, mammals and reptiles. The gravel bars, called point bars, at the inner bank of a meander also provide new surfaces that are critical for the establishment of riparian trees.

Yet, understanding how these channels form has relied until now on limited field measurements or theoretical analysis based on known physics and hydraulics – no one has been able to experimentally create meanders in a laboratory that don't eventually turn into straight channels or braided streams, Braudrick said. An effort to restore Uvas Creek in Gilroy, Calif., for example, ended in failure when a five-year flood stripped away the sinuous meanders leaving a braided channel, similar to the channel prior to the restoration.

Braudrick created a successful laboratory model of a gravel-bed stream by finding the right material to reinforce the banks – alfalfa sprouts – and the right material to represent fine sediment – 0.25-0.42-millimeter lightweight plastic particles. He used sand to represent gravel. Working in a gently-sloping, 6.1x17-meter (20x56-foot) box filled with sand and planted with alfalfa sprouts, he carved a 40-cm (16-inch) wide channel with a single bend at the top, turned on the water, introduced plastic and sand and let the sproutscape rearrange itself over a total of 136 hours.

"We found that you need enough vegetation on the outer bank to slow down erosion and let the bars grow on the inner bank; otherwise, the stream cuts through the point bars and creates a braided river," Braudrick said.

During the experiments, as the channel migrated into chutes or the sinuosity increased, individual bends cut off as the channel took a shorter path. Over the course of the experiment, which took a year to complete and was equivalent to about 5-7 years of high stream flow, the stream formed five new bends that moved downstream as they grew, cut off and re-formed, all the while migrating laterally across the flume's floodplain.

One key to letting real-world bars grow, he said, is fine sediment, about the size of sand, that keeps point bars from being undermined or cut through before they can grow to the elevation of the floodplain, and that plugs holes in bars before the chutes becomes cutoffs. Sand and fine sediment are today considered detrimental when restoring streams for fish spawning because of fears the sediment will cover the gravel in which fish lay their eggs.

"Eliminating fine sediment is probably not a good idea if you want to maintain a single-thread, meandering river that migrates," Braudrick said. A naturally migrating meander, however, constantly brings new sediment in from eroded banks upstream, while also providing wood and debris for animal habitat.

Interestingly, the researchers found that mixing high flows of various heights was not essential to creating meanders, as suggested by other studies. A steady flood flow was sufficient to provide the sediment needed to maintain and build bars and erode banks.

Key to their success was the use of alfalfa sprouts, which was suggested by related experiments at the University of Minnesota, headquarters of the National Center for Earth-Surface Dynamics, of which UC Berkeley is a member. As with trees and other vegetation along natural rivers, the roots of the alfalfa sprouts provide strength to the soil and, when exposed, protect the banks from the force of the water, preventing banks from washing away too quickly.

The downside of sprouts, Braudrick said, is that they rot when repeatedly wet and take time to grow. Every three days, the experiment had to be halted for more than a week to allow the sprouts to die and be replanted. The search is on for hardier plants or other materials that will allow longer trials that should more precisely reproduce natural, long-term processes.

Also key to the success was finding a way to scale-model the fine sediment common in rivers and streams. While sand adequately models gravel, the substances used previously to represent sand did not stay suspended in the water like sand and silt. Plastic materials like those used in sand-blasting were the right size and density to remain suspended and demonstrate the importance of fine sediment in stabilizing point bars.

"This work has taken extraordinary patience and considerable trial and error by Christian to perfect the methods, but now, for the first time, we know how to make dynamic, self-maintaining meanders in the lab, and this opens up many new areas of research," Dietrich said.

Dietrich, Braudrick and their colleagues plan to investigate the role of various factors in determining the shape and migration rate of streams and how variables associated with climate change and land use might be expected to affect river form.

In addition, they hope to determine the conditions that allow meanders to form in permafrost absent vegetation, and on the lifeless surface of Mars.

"What's cool is that meandering channels are all over Mars, and there's no vegetation, so clearly the bank strength is coming from somewhere else, probably ice," Braudrick said. "And the frozen surface of Titan has meanders. All these are vexing problems."

The research was funded by the CALFED Ecosystem Restoration Program and the National Science Foundation, through the National Center for Earth-Surface Dynamics.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>