Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne gut action primes wild chili pepper seeds

21.06.2013
Scientists have long known that seeds gobbled by birds and dispersed across the landscape tend to fare better than those that fall near parent plants where seed-hungry predators and pathogens are more concentrated.

Now it turns out it might not just be the trip through the air that's important, but also the inches-long trip through the bird.


An ant carries off a wild chili pepper seed.
Credit: Tomás Carlo

Seeds from a wild chili pepper plant found in South America, after being eaten and passed through the digestive tract of small-billed Elaenias, emerge with less of the odor that attracts seed-eating ants, and carrying fewer pathogens able to kill the seed.

Passing through bird guts increased seed survival 370 percent, regardless of how far the seeds were dispersed from its parent, according to Evan Fricke, a UW doctoral student in biology and lead author of a paper appearing online June 21 in Ecology Letters.

"Ecologists have not been considering gut processing as a factor when they find seeds having less predation or infection away from parent plants, but they should," Fricke said. "If similar mechanisms are happening with other species, then ecologists have been missing some major benefits of seed dispersal mutualism between plants and animals."

The assumption has been that the better success was all a matter of distance. And in some cases it is. There have been previous experiments, for example, where seeds from a single plant were planted right by the plant and others at some distance away – no passing through an animal gut, just planted by hand. The seeds farther away survived better.

Not all plants benefit when seeds are far from the parent plant, including the chili pepper in the study. The scientists found there was little survival difference between gut-passed seeds planted near other wild chili peppers and those planted some distance away. This could lead to the mistaken idea that the short-billed Elaenia is not important for the wild chili pepper if, as previously assumed, the main value of a bird carrying seeds is to get them away from predators and pathogens around parent plants, Fricke said.

The plant in the study, Capsicum chacoense, grows to 5 feet (1.5 meters) tall and produces half-inch (centimeter) peppers that are red when ripe and hotter-tasting than jalapenos. It grows wild in Bolivia, Paraguay and Argentina. The bird, Elaenia parvirostris, is the most common consumer of chilies at the study site in southeast Bolivia.

While still on the plant, insects infect some peppers with a kind of fungi that kills seeds. Laboratory examination of seeds that had passed through birds showed the fungal load of infected seeds was reduced by more than 30 percent. Growing under natural conditions, gut-passed seeds had twice the survival rate of seeds taken directly from peppers.

When it came to hungry ants – a major predator of pepper seeds at the study site – seeds straight from peppers were twice as likely to be carried off as were gut-passed seeds, at least for the first two days. After that the ants went after both kinds of seeds about equally. The scientists suspected some sort of chemical dynamic and lab investigations showed seeds that hadn't passed through birds emitted volatile compounds, especially during the first two days, that attracted ants.

The work was funded by the National Science Foundation and National Geographic Society, and logistical support in Bolivia was provided by Fundación Amigos de la Naturaleza and the Wildlife Conservation Society. The other UW co-authors are Melissa Simon, Karen Reagan, Jeffrey Riffell and Joshua Tewksbury, who remains a UW faculty member although he is now with the World Wildlife Fund in Switzerland. The other co-authors are Douglas Levey with the National Science Foundation and Tomás Carlo, who did postdoctoral research at the UW and is now at Pennsylvania State University.

For more information: Fricke, is working in the Mariana Islands and can be reached via email, ecfricke@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>