Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne gut action primes wild chili pepper seeds

21.06.2013
Scientists have long known that seeds gobbled by birds and dispersed across the landscape tend to fare better than those that fall near parent plants where seed-hungry predators and pathogens are more concentrated.

Now it turns out it might not just be the trip through the air that's important, but also the inches-long trip through the bird.


An ant carries off a wild chili pepper seed.
Credit: Tomás Carlo

Seeds from a wild chili pepper plant found in South America, after being eaten and passed through the digestive tract of small-billed Elaenias, emerge with less of the odor that attracts seed-eating ants, and carrying fewer pathogens able to kill the seed.

Passing through bird guts increased seed survival 370 percent, regardless of how far the seeds were dispersed from its parent, according to Evan Fricke, a UW doctoral student in biology and lead author of a paper appearing online June 21 in Ecology Letters.

"Ecologists have not been considering gut processing as a factor when they find seeds having less predation or infection away from parent plants, but they should," Fricke said. "If similar mechanisms are happening with other species, then ecologists have been missing some major benefits of seed dispersal mutualism between plants and animals."

The assumption has been that the better success was all a matter of distance. And in some cases it is. There have been previous experiments, for example, where seeds from a single plant were planted right by the plant and others at some distance away – no passing through an animal gut, just planted by hand. The seeds farther away survived better.

Not all plants benefit when seeds are far from the parent plant, including the chili pepper in the study. The scientists found there was little survival difference between gut-passed seeds planted near other wild chili peppers and those planted some distance away. This could lead to the mistaken idea that the short-billed Elaenia is not important for the wild chili pepper if, as previously assumed, the main value of a bird carrying seeds is to get them away from predators and pathogens around parent plants, Fricke said.

The plant in the study, Capsicum chacoense, grows to 5 feet (1.5 meters) tall and produces half-inch (centimeter) peppers that are red when ripe and hotter-tasting than jalapenos. It grows wild in Bolivia, Paraguay and Argentina. The bird, Elaenia parvirostris, is the most common consumer of chilies at the study site in southeast Bolivia.

While still on the plant, insects infect some peppers with a kind of fungi that kills seeds. Laboratory examination of seeds that had passed through birds showed the fungal load of infected seeds was reduced by more than 30 percent. Growing under natural conditions, gut-passed seeds had twice the survival rate of seeds taken directly from peppers.

When it came to hungry ants – a major predator of pepper seeds at the study site – seeds straight from peppers were twice as likely to be carried off as were gut-passed seeds, at least for the first two days. After that the ants went after both kinds of seeds about equally. The scientists suspected some sort of chemical dynamic and lab investigations showed seeds that hadn't passed through birds emitted volatile compounds, especially during the first two days, that attracted ants.

The work was funded by the National Science Foundation and National Geographic Society, and logistical support in Bolivia was provided by Fundación Amigos de la Naturaleza and the Wildlife Conservation Society. The other UW co-authors are Melissa Simon, Karen Reagan, Jeffrey Riffell and Joshua Tewksbury, who remains a UW faculty member although he is now with the World Wildlife Fund in Switzerland. The other co-authors are Douglas Levey with the National Science Foundation and Tomás Carlo, who did postdoctoral research at the UW and is now at Pennsylvania State University.

For more information: Fricke, is working in the Mariana Islands and can be reached via email, ecfricke@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>