Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne gut action primes wild chili pepper seeds

21.06.2013
Scientists have long known that seeds gobbled by birds and dispersed across the landscape tend to fare better than those that fall near parent plants where seed-hungry predators and pathogens are more concentrated.

Now it turns out it might not just be the trip through the air that's important, but also the inches-long trip through the bird.


An ant carries off a wild chili pepper seed.
Credit: Tomás Carlo

Seeds from a wild chili pepper plant found in South America, after being eaten and passed through the digestive tract of small-billed Elaenias, emerge with less of the odor that attracts seed-eating ants, and carrying fewer pathogens able to kill the seed.

Passing through bird guts increased seed survival 370 percent, regardless of how far the seeds were dispersed from its parent, according to Evan Fricke, a UW doctoral student in biology and lead author of a paper appearing online June 21 in Ecology Letters.

"Ecologists have not been considering gut processing as a factor when they find seeds having less predation or infection away from parent plants, but they should," Fricke said. "If similar mechanisms are happening with other species, then ecologists have been missing some major benefits of seed dispersal mutualism between plants and animals."

The assumption has been that the better success was all a matter of distance. And in some cases it is. There have been previous experiments, for example, where seeds from a single plant were planted right by the plant and others at some distance away – no passing through an animal gut, just planted by hand. The seeds farther away survived better.

Not all plants benefit when seeds are far from the parent plant, including the chili pepper in the study. The scientists found there was little survival difference between gut-passed seeds planted near other wild chili peppers and those planted some distance away. This could lead to the mistaken idea that the short-billed Elaenia is not important for the wild chili pepper if, as previously assumed, the main value of a bird carrying seeds is to get them away from predators and pathogens around parent plants, Fricke said.

The plant in the study, Capsicum chacoense, grows to 5 feet (1.5 meters) tall and produces half-inch (centimeter) peppers that are red when ripe and hotter-tasting than jalapenos. It grows wild in Bolivia, Paraguay and Argentina. The bird, Elaenia parvirostris, is the most common consumer of chilies at the study site in southeast Bolivia.

While still on the plant, insects infect some peppers with a kind of fungi that kills seeds. Laboratory examination of seeds that had passed through birds showed the fungal load of infected seeds was reduced by more than 30 percent. Growing under natural conditions, gut-passed seeds had twice the survival rate of seeds taken directly from peppers.

When it came to hungry ants – a major predator of pepper seeds at the study site – seeds straight from peppers were twice as likely to be carried off as were gut-passed seeds, at least for the first two days. After that the ants went after both kinds of seeds about equally. The scientists suspected some sort of chemical dynamic and lab investigations showed seeds that hadn't passed through birds emitted volatile compounds, especially during the first two days, that attracted ants.

The work was funded by the National Science Foundation and National Geographic Society, and logistical support in Bolivia was provided by Fundación Amigos de la Naturaleza and the Wildlife Conservation Society. The other UW co-authors are Melissa Simon, Karen Reagan, Jeffrey Riffell and Joshua Tewksbury, who remains a UW faculty member although he is now with the World Wildlife Fund in Switzerland. The other co-authors are Douglas Levey with the National Science Foundation and Tomás Carlo, who did postdoctoral research at the UW and is now at Pennsylvania State University.

For more information: Fricke, is working in the Mariana Islands and can be reached via email, ecfricke@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>