Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain reduces methane emissions from rice paddies

07.08.2008
Acid rain from atmospheric pollution can reduce methane emissions from rice paddies by up to 24 per cent according to research led by Dr Vincent Gauci of The Open University.

This is potentially a beneficial side effect of the high pollution levels China - the world’s largest producer of rice - is often associated with. Methane is 21 times more powerful as a greenhouse gas than CO2.

“The reduction in pollution happens during a stage of the lifecycle when the rice plant is producing grain. This period is normally associated with around half of all methane emissions from rice and we found that simulated acid rain pollution reduced this emission by 24 per cent,” said Dr Gauci.

The project - funded by the Natural Environment Research Council - used rice soils and grain from Portuguese paddies. Soils from these paddies have been exposed to very little acid rain and are similar to Asian rice soils before they became polluted. To test the effects of acid rain, the researchers added frequent small doses of sulphate, which simulate acid rain experienced in polluted areas of China.

“We had similar results when exposing natural wetlands to simulated acid rain but this could be more important since natural wetlands are mostly located far from major pollution sources, whereas for rice agriculture, the methane source and the largest source of acid rain are both in the same region - Asia,” added Dr Gauci.

“We need to do further research but it looks like there could be a combination of processes at work. One line of investigation we’d like to confirm is that the sulfate component of acid rain may actually boost rice yields. This might, paradoxically, have the effect of reducing a source of food for the methane producing micro-organisms that live in the soil.”

This is because some sugars produced by rice plants are lost in the soil and micro-organisms feed on these sugars. But when the rice plant is producing grain, the carbohydrates are directed into grain production and away from soil so limiting the amount of food available for micro-organisms.

“There is also likely to be competition between these micro-organisms and sulphate-reducing bacteria. Normally in these conditions sulphate-reducers win which results in less methane.”

Dr Gauci added a note of caution to the results. “Acid rain is one of several pollution problems in Asia that need solving in the coming decades but we need to appreciate the potential consequences of that clean up, one of which could be an increase in methane emissions as the effect of the acid rain wears off.”

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>