Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain poses a previously unrecognized threat to Great Lakes sugar maples

16.12.2011
The number of sugar maples in Upper Great Lakes forests is likely to decline in coming decades, according to University of Michigan ecologists and their colleagues, due to a previously unrecognized threat from a familiar enemy: acid rain.

Over the past four decades, sugar maple abundance has declined in some regions of the northeastern United States and southeastern Canada, due largely to acidification of calcium-poor granitic soils in response to acid rain.

Sugar maple forests in the Upper Great Lakes region, in contrast, grow in calcium-rich soils. Those soils provide a buffer against soil acidification. So sugar maple forests here have largely been spared the type of damage seen in mature sugar maples of the Northeast.

But now, a U-M-led team of ecologists has uncovered a different and previously unstudied mechanism by which acid rain harms sugar maple seedlings in Upper Great Lakes forests.

The scientists have concluded that excess nitrogen from acid rain slows the microbial decay of dead maple leaves on the forest floor, resulting in a build-up of leaf litter that creates a physical barrier for seedling roots seeking soil nutrients, as well as young leaves trying to poke up through the litter to reach sunlight.

A stand of Michigan sugar maples. Photo courtesy of Sierra Patterson and Alan Talhelm"The thickening of the forest floor has become a physical barrier for seedlings to reach mineral soil or to emerge from the extra litter," said ecologist Donald Zak, a professor at the U-M School of Natural Resources and Environment and co-author of an article published online Dec. 8 in the Journal of Applied Ecology. Zak is also a professor of ecology and evolutionary biology.

"What we've uncovered is a totally different and indirect mechanism by which atmospheric nitrogen deposition can negatively impact sugar maples," Zak said.

The new findings are the latest results from a 17-year experiment at four sugar maple stands in Michigan's lower and upper peninsulas.

By the end of this century, nitrogen deposition from acid rain is expected to more than double worldwide, due to increased burning of fossil fuels. For the last 17 years at the four Michigan sugar maple test sites, Zak and his colleagues have added sodium nitrate pellets (six times throughout the growing season, every year) to three 30-meter by 30-meter test plots at each of the four Michigan maple stands. Adding the pellets was done to simulate the amount of nitrogen deposition expected by the end of the century.

Seedling-establishment data from the nitrogen-spiked test plots were compared to the findings from a trio of nearby control plots that received no additional nitrogen. Most of the fieldwork and analysis was done by 2010 SNRE graduate Sierra Patterson, who conducted the study for her master's thesis.

A researcher at one of four sugar maple research sites in Michigan. Photo courtesy of Sierra Patterson and Alan TalhelmPatterson and her colleagues found that adding extra nitrogen increased the amount of leaf litter on the forest floor by up to 50 percent, causing a significant reduction in the successful establishment of sugar maple seedlings.

When the number of seedlings on nitrogen-supplemented treatment was compared to the number of seedlings on the no-nitrogen-added treatment, the mean abundance of second-year seedlings was 13.1 stems per square meter under ambient nitrogen deposition and 1.6 stems per square meter under simulated nitrogen deposition.

The mean abundance of seedlings between three and five years of age also significantly declined under simulated nitrogen deposition: 10.6 stems per square meter grew under ambient nitrogen deposition, compared to 0.6 stems per square meter under simulated nitrogen deposition.

"Increasing nitrogen deposition has the potential to lead to major changes in sugar maple-dominated northern hardwood forests in the Great Lakes region," said Patterson, who now works as a botanist for the Huron-Manistee National Forests in Michigan.

"In terms of regeneration, it looks like it'll be difficult for new seeds to replace the forest overstory in the future," she said "So the populations of sugar maples in this region could potentially decline."

A sugar maple displays its fall foliage. Photo courtesy of flickr.com user tlindenbaumThe article is titled "Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem." The other authors are Andrew J. Burton of Michigan Technological University, Alan F. Talhelm of the University of Idaho and Kurt S. Pregitzer of the University of Idaho.

Funding for the study has been provided by grants from the National Science Foundation and the U.S. Department of Energy's Division of Environmental Biology.

"The surprising results reported in this study are an example of the value of long-term research," said Saran Twombly, program director in the National Science Foundation's Division of Environmental Biology, which funded the work.

"Uncovering the unexpected link between nitrogen deposition and sugar maple seedling success depended on the ability to simulate increased nitrogen deposition year after year," Twombly said. "The manipulations used to reveal the details of this link could not have worked in other than a long-term study."

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu
http://ns.umich.edu/new/20128-acid-rain-poses-a-previously-unrecognized-threat-to-great-lakes-sugar-maples

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>