Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of 2 species

28.03.2014

Scientists identify factors limiting hybridization of closely-related woodrat species

A pair of new studies from the Wildlife Conservation Society, Idaho State University, and the University of Nevada Reno look at the surprising variety of factors that prevent two closely related species of woodrats from becoming a single hybrid species despite the existence of hybrid individuals where the two species come into contact.


This photo shows a woodrat emerging from its den at dusk. The small tags in each ear indicate that this individual had been previously captured and genetic material was sampled as part of a study to understand the dynamics of the hybrid zone in southern California.

Credit: Quinn Shurtliff

After finding that two closely related species, the desert and Bryant's woodrats, could interbreed and produce hybrid offspring, scientists set out to determine why only 14 percent of the population in a "contact zone" had genetic signatures from both species. (If the two species were similar enough to interbreed, what was keeping them from merging into a single hybrid species?)

In the study, "Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale," which appears in the March print edition of the journal Evolution, the authors discuss the factors driving these mating dynamics in a hybrid zone in southern California.

... more about:
»Conservation »mammal »species »woodrats

Trapping and handling hundreds of woodrats (also known as packrats), the scientists found that the two species are highly associated with different habitat types, though they may live within meters of each other along the boundary. Their research showed that 98 percent of Bryant's woodrats occupied a boulder-strewn hillside comprised of coastal / Sierra vegetation, while 93 percent of the desert woodrats occupied the adjacent valley floor consisting of Mojave desert scrub and a sandy substrate. This, in spite of the fact that both habitats were theoretically available to both species.

"Mating opportunities between species are limited because the two species make their homes and forage in very distinct habitats, even though those habitats are right next to each other," said lead author of both studies, Quinn Shurtliff of the Wildlife Conservation Society and Idaho State University.

Another reason why interbreeding between species is limited: personality conflicts. The scientists brought wild-caught woodrats into the laboratory to test female mate preferences.

They found that Bryant's woodrat females selected either Bryant's woodrat males or desert woodrat males with equal preference. Desert woodrat females, however, almost always mated with males of their own species.

The reason? The desert woodrat females were intimidated by Bryant's woodrat males due to their larger body size and aggressive nature. In contrast, Bryant's females, themselves larger, were open to mating with the smaller, more docile desert woodrat males as well as the males of their own species.

Another factor shown to be determining the number of hybrids is that hybrid offspring do not survive to adulthood as well as do the other two species. Higher proportions of Bryant's woodrats survived to their first year of adulthood than did the hybrids (33 percent vs. 10 percent). The same was the case for the desert woodrats (22 percent vs.10 percent percent). Once the hybrids reached their first year of adulthood, however, they fared as well as the purebreds.

The reason for the low juvenile hybrid survivability, the authors say, may lie in the lack of aggressiveness and ability to compete with purebred males for denning sites and in winning territorial battles. This may necessitate greater dispersal for the male hybrids pushing them out of range of female hybrids and exposing them to greater predation pressure.

Shurtliff said, "These studies offer further insight into the behavioral and ecological dynamics of hybrid zones.

Understanding these unique areas is important because there are many examples of naturally occurring hybrid zones, and new hybrid zones will form in the future as climate change and human impacts cause species distributions to shift and come into contact. For example, scientists have documented hybrid zones between introduced and native species, and climate change has already been linked to hybridization among flying squirrels in eastern North America. It is important to understand these relationships so that we can predict, and where necessary, mitigate their negative impacts."

###

"Experimental evidence for asymmetric mate preference and aggression: behavioral interactions in a woodrat (Neotoma) hybrid zone," appears online on BioMed Central. Authors include: Quinn R. Shurtliff of the Wildlife Conservation Society; Peter J. Murphy and Marjorie D. Matocq of the University of Nevada, Reno; and Jaclyn D. Yeiter of Idaho State University.

"Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale," appears in the March print edition of the journal Evolution. Authors include: Quinn R. Shurtliff of the Wildlife Conservation Society; Peter J. Murphy and Marjorie D. Matocq of the University of Nevada, Reno.

Scott Smith | EurekAlert!
Further information:
http://www.wcs.org

Further reports about: Conservation mammal species woodrats

More articles from Ecology, The Environment and Conservation:

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>