Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of 2 species

28.03.2014

Scientists identify factors limiting hybridization of closely-related woodrat species

A pair of new studies from the Wildlife Conservation Society, Idaho State University, and the University of Nevada Reno look at the surprising variety of factors that prevent two closely related species of woodrats from becoming a single hybrid species despite the existence of hybrid individuals where the two species come into contact.


This photo shows a woodrat emerging from its den at dusk. The small tags in each ear indicate that this individual had been previously captured and genetic material was sampled as part of a study to understand the dynamics of the hybrid zone in southern California.

Credit: Quinn Shurtliff

After finding that two closely related species, the desert and Bryant's woodrats, could interbreed and produce hybrid offspring, scientists set out to determine why only 14 percent of the population in a "contact zone" had genetic signatures from both species. (If the two species were similar enough to interbreed, what was keeping them from merging into a single hybrid species?)

In the study, "Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale," which appears in the March print edition of the journal Evolution, the authors discuss the factors driving these mating dynamics in a hybrid zone in southern California.

... more about:
»Conservation »mammal »species »woodrats

Trapping and handling hundreds of woodrats (also known as packrats), the scientists found that the two species are highly associated with different habitat types, though they may live within meters of each other along the boundary. Their research showed that 98 percent of Bryant's woodrats occupied a boulder-strewn hillside comprised of coastal / Sierra vegetation, while 93 percent of the desert woodrats occupied the adjacent valley floor consisting of Mojave desert scrub and a sandy substrate. This, in spite of the fact that both habitats were theoretically available to both species.

"Mating opportunities between species are limited because the two species make their homes and forage in very distinct habitats, even though those habitats are right next to each other," said lead author of both studies, Quinn Shurtliff of the Wildlife Conservation Society and Idaho State University.

Another reason why interbreeding between species is limited: personality conflicts. The scientists brought wild-caught woodrats into the laboratory to test female mate preferences.

They found that Bryant's woodrat females selected either Bryant's woodrat males or desert woodrat males with equal preference. Desert woodrat females, however, almost always mated with males of their own species.

The reason? The desert woodrat females were intimidated by Bryant's woodrat males due to their larger body size and aggressive nature. In contrast, Bryant's females, themselves larger, were open to mating with the smaller, more docile desert woodrat males as well as the males of their own species.

Another factor shown to be determining the number of hybrids is that hybrid offspring do not survive to adulthood as well as do the other two species. Higher proportions of Bryant's woodrats survived to their first year of adulthood than did the hybrids (33 percent vs. 10 percent). The same was the case for the desert woodrats (22 percent vs.10 percent percent). Once the hybrids reached their first year of adulthood, however, they fared as well as the purebreds.

The reason for the low juvenile hybrid survivability, the authors say, may lie in the lack of aggressiveness and ability to compete with purebred males for denning sites and in winning territorial battles. This may necessitate greater dispersal for the male hybrids pushing them out of range of female hybrids and exposing them to greater predation pressure.

Shurtliff said, "These studies offer further insight into the behavioral and ecological dynamics of hybrid zones.

Understanding these unique areas is important because there are many examples of naturally occurring hybrid zones, and new hybrid zones will form in the future as climate change and human impacts cause species distributions to shift and come into contact. For example, scientists have documented hybrid zones between introduced and native species, and climate change has already been linked to hybridization among flying squirrels in eastern North America. It is important to understand these relationships so that we can predict, and where necessary, mitigate their negative impacts."

###

"Experimental evidence for asymmetric mate preference and aggression: behavioral interactions in a woodrat (Neotoma) hybrid zone," appears online on BioMed Central. Authors include: Quinn R. Shurtliff of the Wildlife Conservation Society; Peter J. Murphy and Marjorie D. Matocq of the University of Nevada, Reno; and Jaclyn D. Yeiter of Idaho State University.

"Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale," appears in the March print edition of the journal Evolution. Authors include: Quinn R. Shurtliff of the Wildlife Conservation Society; Peter J. Murphy and Marjorie D. Matocq of the University of Nevada, Reno.

Scott Smith | EurekAlert!
Further information:
http://www.wcs.org

Further reports about: Conservation mammal species woodrats

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>