Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Symbiotic Way of Life

06.05.2014

UM researchers discover a “simple and elegant mechanism” that regulates relationships between insects and bacteria.

Symbiosis is the process that occurs when two different organisms live together to form a mutually beneficial partnership. In many symbiotic relationships, host animals and their microbial symbionts are partners that make up a whole – neither one can function without the other but together they grow and reproduce.


Adult pea aphid

A study by University of Miami researchers reveals how, at the cellular level, an animal and its symbiotic bacteria work together to make up a single organismal system. The study titled “Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts” is published in the journal Proceedings of the National Academy of Science (PNAS).

The findings show how a simple mechanism allows an insect, the pea aphid, to regulate the manufacturing of essential nutrients supplied by its symbiotic bacteria called Buchnera aphidicola.

... more about:
»Biology »Life »amino »genes »insect »proteins »synthesis

“We’ve identified the key regulator of this symbiosis,” said Alex C. C. Wilson, associate professor of Biology in the College of Arts and Sciences and corresponding author of the study. “It’s our first real insight into the mechanisms working at the interface of the host and symbiont.”

The pea aphid feeds on plant sap. Its diet is deficient in essential nutrients called amino acids. The aphid can produce some amino acids on its own, but the rest it must get from beneficial bacteria that live inside aphid cells. In turn, the symbiotic bacteria can’t produce amino acids that the aphid can make, so the partners exchange insect-produced amino acids for symbiont-produced amino acids.

“That conversion of going from a diet with an inappropriate nutritional profile, to an appropriate profile occurs in collaboration between the bacteria and the host,” Wilson said. “The question is whether the production of nutrients changes with supply and demand and if so, how it happens.”

To help answer this question the researchers looked at amino acids that are fundamental to the pea aphid-Buchnera symbiotic function. One of those amino acids is glutamine, which is made in the aphid. Glutamine is important because it’s the precursor for all amino acids produced both by the aphid and by the symbiont. The other amino acid is arginine, which is made in Buchnera and it’s deficient in the pea aphid’s diet.

Glutamine is ferried across a membrane that surrounds the cells where the bacteria lives, by an amino acid transporter named ApGLNT1. To study this transport mechanism the researchers used a procedure that uses frog eggs (called oocytes) to manufacture ApGLNT1. This specialized approach is used by Charles W. Luetje, chairman of the department of Molecular and Cellular Pharmacology in the UM Miller School of Medicine and co-author of the study.

“My lab specializes in the use of a technique that allows functional studies of various receptors, channels and transporters,” said Luetje. “The oocytes are useful for expression of a wide variety of proteins and are particularly helpful when studying difficult proteins that don’t express well in other systems.”

Based on their work figuring out what ApGLNT1 transports and where it is localized in the pea aphid, the researchers built a model that describes how the amino acid factory responds to supply and demand.

The findings show that when there is a buildup of arginine in the pea aphid, arginine binds to ApGLNT1, and inhibits glutamine uptake. Since glutamine is a precursor for amino acids, the bacteria’s synthesis of arginine is in turn reduced. Once arginine is assimilated by the host, glutamine transport resumes and synthesis of arginine is restored.

“To our surprise, the transporter is a key regulator of the factory production line,” said Daniel R. G. Price, who worked on the project when he was assistant scientist in the Department of Biology at UM and is first author of the study.

“When aphid demand for essential nutrients is high, the transporter imports large amounts of precursor and the precursor is converted into essential nutrients that are returned to the aphid,” Price says. “Conversely, when there is low aphid essential nutrient demand, little precursor is imported and the essential nutrient production factory is shut down.”

A remarkably basic mechanism regulates the biosynthesis of symbiont-produced arginine, in response to the needs of the pea aphid. But the model goes further than that.

“Since ApGLNT1 localizes to the membrane of aphid cells where the bacteria resides and because of other features peculiar to aphid metabolism, transporter ApGLNT1 not only regulates arginine biosynthesis, but all amino acid biosynthesis,” Wilson said. “The system is simple and elegant.”

Thus amino acid transporters play a key role in the evolutionary success of these insects. But an important question remains: How generalizable is this regulatory mechanism across symbiotic systems? Wilson’s lab may find the answer by looking at other sap-feeding insects with intracellular bacteria, based on an understanding that emerged from another study from her lab. The study titled “Dynamic recruitment of amino acid transporters to the insect-symbiont interface” is published in the journal of Molecular Ecology.

That study found that the presence of amino acid transporters is significantly expanded in some sap-feeding insects relative to non sap-feeding insects. Further, these expansions result from large-scale gene duplications that took place independently in different sap-eating insects. Gene duplication is a process that occurs when part of an organism’s genetic material is replicated. Groups of similar genes that share an evolutionary ancestry are called gene families.

“Given the extensive gene duplication of the amino acid transporter gene families that took place multiple times independently in sap-feeding insects, it makes sense that gene duplication might be important for recruiting amino acid transporters to mediate amino acid exchange between these insects and their symbionts,” said Rebecca P. Duncan, doctoral student in the Department of Biology at UM and first author of the study.

The sap-eating insects with expanded amino acid transporters come from a common ancestor. However, given that the genes expanded independently in each insect, sap-feeding insects likely evolved their relationships with their symbionts separately, as opposed to in their common ancestor. Hence, Wilson’s lab can test if their model is broadly applicable by examining the mechanism of symbiotic regulation in the other sap-feeding insects used in this study. The findings of these studies show that symbiotic relationships have the power to shape animal evolution at the genetic level.

Annette Gallagher | Eurek Alert!
Further information:
http://www.miami.edu/index.php/news/releases/a_symbiotic_way_of_life/

Further reports about: Biology Life amino genes insect proteins synthesis

More articles from Ecology, The Environment and Conservation:

nachricht Marine vessel tracking system also a lifesaver for wildlife
12.02.2016 | Wildlife Conservation Society

nachricht Stability in ecosystems: Asynchrony of species is more important than diversity
12.02.2016 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>