Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Simple Solution to Air Pollution From Wood-Burning Cookstoves

26.04.2013
Billions of people worldwide burn animal dung, crop residues, wood and charcoal to cook their meals. And the chemicals produced and inhaled sicken or kill millions. At particular risk are women who prepare their families’ food and children 5-years-old or younger.

Up to now, most interventions have focused on improving the cookstove to lower emissions. And that would be fine, if there were enough improved cookstoves to go around. But there aren’t. In 2012, only 2.5 million improved cookstoves were distributed, improving the household air pollution situation for exactly one-half of 1 percent of the world’s biomass burners.

So an interdisciplinary team of Michigan Technological University students took a different tack. They decided to look for ways to improve the cooking environment, not just the stove. And they found a low-cost, highly effective way to reduce the impact of cooking over biomass fires without designing and installing high-tech, costly stoves.

Better ventilation.

The cookstove project was born in small town on the Guatemalan border with Mexico, where Michigan Tech environmental engineering graduate student Kelli Whelan was working on an Engineers Without Borders project. She noticed that the kitchen of a family who had built an attic to insulate their house from a hot aluminum roof was much cooler than others she had visited, although they all used the same kind of wood-burning cookstove.

“That made me wonder if the temperature difference helped clear the smoke out, either by a draft or the greater temperature differential between the fire and the surrounding space,” she explains.

When she returned to Michigan Tech, Whelan and several fellow environmental engineering graduate students started work on a project to explore the situation. They built both a working model of a biomass cookstove and a computer model to test different kitchen and cooking conditions.

After receiving the EPA P3 grant, they surveyed Peace Corps Master’s International and Pavlis Global Technological Leadership Institute students at Tech who had worked in countries where biomass-burning cookstoves are used. They also conducted more physical and computational model tests, 57 of them, testing for the presence and transport of particulate matter, carbon monoxide and carbon, as well as comparing wind speed, temperature, humidity, roofing materials, wall height, cookstove placement and windows and doors open or closed.

“Our focus was not on ventilation, but on trying to determine which factors really influence the air quality in a kitchen and which do not,” said Whelan.

They discovered that ventilation is very important. “The improved cookstoves, which are supposed to reduce emissions, actually made the air quality worse under completely enclosed conditions,” she said. “In contrast, we saw the greatest reduction in ambient particulate matter and carbon monoxide with an improved cookstove and with windows and doors open.”

They also learned that not all ventilation helps. “Having two windows open on opposite ends of the kitchen was best, whereas having all the windows and doors open was worse,” Whelan said. “This is because having all outlets open creates turbulence inside the kitchen, and the smoke is not forced out.”

The Michigan Tech students took the results of their field and computer modeling analysis of cookstove air pollution to the EPA Sustainable Design Expo in Washington, DC, last week,one of only 45 college teams invited to do so.

To talk with Kelli Whelan, her faculty advisor or her teammates, call her cell: 517-974-2980.

Kelli Whelan | Newswise
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>