Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new perspective for understanding the mechanisms of catalytic conversion

09.02.2010
The oxidation of toxic carbon monoxide (CO) to carbon dioxide occurs every day in millions of cars. Despite being one of the most studied catalytic processes, the exact mechanism of interaction between the carbon monoxide molecule and the catalyst, often platinum, is not fully understood.

An important step in the reaction is the adsorption of CO on the surface of the catalyst. A team of scientists from the ESRF and the ETH in Zurich (Switzerland) has managed to see how the electrons in the platinum reorganize as the adsorption is taking place and why catalysts are “poisoned”, i.e. why their activity is reduced. It is the first time that this type of experiment is carried out at the same high temperatures and pressures as in a real car exhaust catalyst.

When the CO or other toxic gases get in contact with the catalyst, a noble metal such as platinum, they oxidize to become less dangerous gases. In this case, CO turns to CO2, which the car expels via the exhaust pipe. However, the efficiency of the catalytic conversion decreases considerably when the catalyst is at low temperature. The scientists from the ESRF and ETH in Zurich determined how the CO poisons the surface of the catalyst. The strong bond between CO and the platinum blocks active sites and makes the metal less susceptible to reaction with oxygen, lowering its reactivity.

Scientists around the world have studied thoroughly the electron structure of adsorbed CO using techniques like vibration and soft X-ray spectroscopy, but few have studied the electrons in the platinum, and it has proven extremely difficult to do it on nanoparticles under ambient pressure. In fact, very few experimental techniques are compatible with the required temperature, gas environment, and the low metal concentration of supported nanoparticles.

The team has developed a technique where they can investigate the platinum electrons that take part in the bond with CO. “We have, for the first time, combined a novel experimental and theoretical approach with an important application in catalysis research. This enables us to look at the adsorption of CO on Pt nanoparticles from a new perspective that was previously not accessible” explains Pieter Glatzel, scientist at the ESRF.

The next step is to look at the changes in catalyst structure under actual catalytic conditions, such as those occurring during the preferential oxidation of CO and the water gas shift reaction. “We are very hopeful of this new technique and are sure that it will enable us to improve our knowledge about catalytic systems and, with it, make them better”, says Jeroen van Bokhoven, scientist at the ETH.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr
http://www.esrf.fr/news/general/platinum/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>