Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new perspective for understanding the mechanisms of catalytic conversion

09.02.2010
The oxidation of toxic carbon monoxide (CO) to carbon dioxide occurs every day in millions of cars. Despite being one of the most studied catalytic processes, the exact mechanism of interaction between the carbon monoxide molecule and the catalyst, often platinum, is not fully understood.

An important step in the reaction is the adsorption of CO on the surface of the catalyst. A team of scientists from the ESRF and the ETH in Zurich (Switzerland) has managed to see how the electrons in the platinum reorganize as the adsorption is taking place and why catalysts are “poisoned”, i.e. why their activity is reduced. It is the first time that this type of experiment is carried out at the same high temperatures and pressures as in a real car exhaust catalyst.

When the CO or other toxic gases get in contact with the catalyst, a noble metal such as platinum, they oxidize to become less dangerous gases. In this case, CO turns to CO2, which the car expels via the exhaust pipe. However, the efficiency of the catalytic conversion decreases considerably when the catalyst is at low temperature. The scientists from the ESRF and ETH in Zurich determined how the CO poisons the surface of the catalyst. The strong bond between CO and the platinum blocks active sites and makes the metal less susceptible to reaction with oxygen, lowering its reactivity.

Scientists around the world have studied thoroughly the electron structure of adsorbed CO using techniques like vibration and soft X-ray spectroscopy, but few have studied the electrons in the platinum, and it has proven extremely difficult to do it on nanoparticles under ambient pressure. In fact, very few experimental techniques are compatible with the required temperature, gas environment, and the low metal concentration of supported nanoparticles.

The team has developed a technique where they can investigate the platinum electrons that take part in the bond with CO. “We have, for the first time, combined a novel experimental and theoretical approach with an important application in catalysis research. This enables us to look at the adsorption of CO on Pt nanoparticles from a new perspective that was previously not accessible” explains Pieter Glatzel, scientist at the ESRF.

The next step is to look at the changes in catalyst structure under actual catalytic conditions, such as those occurring during the preferential oxidation of CO and the water gas shift reaction. “We are very hopeful of this new technique and are sure that it will enable us to improve our knowledge about catalytic systems and, with it, make them better”, says Jeroen van Bokhoven, scientist at the ETH.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr
http://www.esrf.fr/news/general/platinum/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>