Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A model approach for sustainable phosphorus recovery from wastewater


Reduce, reuse, recycle... with a profit

A new approach to wastewater treatment may be key in efforts to reduce, reuse, and recycle. Moreover, it can be profitable.

Wastewater treatment infrastructure, such as this anaerobic digester, can be leveraged to capture and recycle phosphorus, a limited essential nutrient.

Credit: Michael Northrop

Phosphorus is an essential element for human nutrition. It plays multiple roles in the human body, including the development of bones and teeth. Fertilizer with phosphorus, applied to crops or lawns, enables healthy growth. Without it, the basic cells of plants and animals, and life itself, would not exist.

Typically, phosphorus is found in phosphate-containing minerals that are mined--a limited and non-renewable resource. The annual demand is rising quickly. However, once used, phosphorus is difficult to reclaim.

Where does the phosphorus go? In animals (including humans), urine contains phosphorus. Surface water carry large amounts of phosphorus from fields and lawns downstream. The result is phosphorus in water discharged by wastewater treatment plants (WWTPs).

"Whatever phosphorus we use and discharge into rivers and oceans is lost to the environment," says Rolf Halden, professor at the School of Sustainable Engineering and the Built Environment, and director of the Center for Environmental Security, Arizona State University.

Additionally, accumulation of phosphorus can result in problems like algae blooms in lakes and other surface water bodies. In turn, algae blooms deplete oxygen from the water, affecting the delicate balance of aquatic life. "This problem is observed in the seasonally recurring 'dead zone' of the Gulf of Mexico," says Halden.

Halden's group recently published a study in the Journal of Environmental Quality that examined methods for recovering phosphorus from wastewater using mathematical modeling. "WWTPs represent ground zero for addressing the problem of global phosphorus depletion," Halden says.

WWTPs in many cities are currently implementing methods to extract phosphorus before discharging wastewater into the environment. There are two main types of phosphorus recovery methods: chemical and biological.

In the chemical method, WWTP treat phosphorus dissolved in wastewater. The phosphorus then falls out of solution for easier removal. In the biological method, bacteria introduced into the water collect the phosphorus into removable sludge. A variation includes enhanced biological phosphorus removal (EBPR). This method selectively encourages bacteria that can accumulate phosphorus.

Choosing a method is complicated. "The region's water quality, size of the treatment plant, and economic considerations play a role in the selection," explains the study's lead author, Arjun Venkatesan.

Halden and Venkatesan's study focused on a combination approach. First, EBPR concentrated phosphorus in sludge. Next, chemical treatment helped phosphorus fall out to form struvite, a usable phosphate mineral. The study showed that a typical WWTP could reclaim approximately 490 tons of phosphorus in the form of struvite each year.

Conventional methods remove only 40%-50% of P, according to Venkatesan. The secondary treatment of sludge employed by EBPR "achieves an additional 35% mass reduction, for a total of about 90% removal," he says. EBPR helpfully avoids additional chemicals and reduces sludge production. Both these factors lower the cost of operation--a key consideration for WWTPs with limited budgets.

Reclaimed phosphorus pays off for the environment with less mining for phosphorus and improved surface water health. phosphorus recovered as struvite can also generate income. The team estimates that the WWTP used in their case study could generate $150,000 in annual revenue from this two-pronged approach. A plant with existing EBFR facilities can recoup the initial expenses in as little as 3 years.

"Nearly 367,500 tons per year of phosphorus could be generated with combined EBPR and struvite production," says Halden, in plants with treatment capacity similar to the one used in the case study.

Such a payload can be a welcomed payoff for conscientious communities.

Susan Fisk | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>