Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lake fauna in a shot-glass

12.12.2011
Danish research team leads the way for future biodiversity monitoring using DNA traces in the environment to keep track of threatened wildlife – a lake water sample the size of a shot-glass can contain evidence of an entire lake fauna.

Global biodiversity is plummeting while biologists are fighting to keep score and reliable monitoring of threatened animals remains a major challenge. The biologist toolset has changed little on this area for a hundred years - still relying on expensive expert surveys basically finding and counting the animals.

However, this situation is now set to change according to a recent study by researchers at the Natural History Museum of Denmark published as a cover story in the acclaimed scientific journal Molecular Ecology. The results of the study show that a new method can be used to monitor rare and threatened animal species from DNA traces in their freshwater environments.

The development of the innovative DNA species monitoring was accomplished by PhD student Philip Francis Thomsen and Master's students Jos Kielgast and Lars L. Iversen at Centre for GeoGenetics headed by professor Eske Willerslev.

"We have shown that the DNA detection method works on a wide range of different rare species living in freshwater - they all leave DNA traces in their environment which can be detected in even very small water samples from their habitat. In the water samples we find DNA from animals as different as an otter and a dragonfly," says Philip Francis Thomsen.

By studying the fauna of one hundred different lakes and streams in Europe with both conventional methods - counting individuals - and the new DNA-based method the research team documents that DNA detection is effective even in populations where the animals are extremely rare. The study also shows that there is a clear correlation between the amount of DNA in the environment and the density of individuals meaning that the DNA detection method can even be used to estimate population sizes. This is crucial in the monitoring of rare animals, where one often wants to know whether the population is large or small.

"The UN has agreed to halt the decline of biodiversity, but a prerequisite to do so is that we are capable of properly documenting the status of threatened species. Our new approach is a huge step forward making it cheaper and faster to monitor the endangered species, and thus prioritise efforts to the benefit of biodiversity at a broad scale," says Jos Kielgast.

The researchers have documented that DNA traces of animals are nearly ubiquitous in the freshwater environment and, as a proof-of-concept, these findings may have wider implications reaching disciplines far beyond threatened species monitoring. With DNA sequencing technology advancing at rapidly dropping costs, environmental DNA research is set to change from being merely a scientific curiosity to become an important tool in applied biology. It is for example conceivable that fishing quota may in the future be based on DNA traces rather than fish catches.

Contact information

PhD student, Philip Francis Thomsen (tel. 45-27142046)

Master's thesis student, Jos Kielgast (tel. 45-28492128), skypename: jos_kielgast

Philip Francis Thomsen | EurekAlert!
Further information:
http://www..ku.dk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>