Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lake fauna in a shot-glass

12.12.2011
Danish research team leads the way for future biodiversity monitoring using DNA traces in the environment to keep track of threatened wildlife – a lake water sample the size of a shot-glass can contain evidence of an entire lake fauna.

Global biodiversity is plummeting while biologists are fighting to keep score and reliable monitoring of threatened animals remains a major challenge. The biologist toolset has changed little on this area for a hundred years - still relying on expensive expert surveys basically finding and counting the animals.

However, this situation is now set to change according to a recent study by researchers at the Natural History Museum of Denmark published as a cover story in the acclaimed scientific journal Molecular Ecology. The results of the study show that a new method can be used to monitor rare and threatened animal species from DNA traces in their freshwater environments.

The development of the innovative DNA species monitoring was accomplished by PhD student Philip Francis Thomsen and Master's students Jos Kielgast and Lars L. Iversen at Centre for GeoGenetics headed by professor Eske Willerslev.

"We have shown that the DNA detection method works on a wide range of different rare species living in freshwater - they all leave DNA traces in their environment which can be detected in even very small water samples from their habitat. In the water samples we find DNA from animals as different as an otter and a dragonfly," says Philip Francis Thomsen.

By studying the fauna of one hundred different lakes and streams in Europe with both conventional methods - counting individuals - and the new DNA-based method the research team documents that DNA detection is effective even in populations where the animals are extremely rare. The study also shows that there is a clear correlation between the amount of DNA in the environment and the density of individuals meaning that the DNA detection method can even be used to estimate population sizes. This is crucial in the monitoring of rare animals, where one often wants to know whether the population is large or small.

"The UN has agreed to halt the decline of biodiversity, but a prerequisite to do so is that we are capable of properly documenting the status of threatened species. Our new approach is a huge step forward making it cheaper and faster to monitor the endangered species, and thus prioritise efforts to the benefit of biodiversity at a broad scale," says Jos Kielgast.

The researchers have documented that DNA traces of animals are nearly ubiquitous in the freshwater environment and, as a proof-of-concept, these findings may have wider implications reaching disciplines far beyond threatened species monitoring. With DNA sequencing technology advancing at rapidly dropping costs, environmental DNA research is set to change from being merely a scientific curiosity to become an important tool in applied biology. It is for example conceivable that fishing quota may in the future be based on DNA traces rather than fish catches.

Contact information

PhD student, Philip Francis Thomsen (tel. 45-27142046)

Master's thesis student, Jos Kielgast (tel. 45-28492128), skypename: jos_kielgast

Philip Francis Thomsen | EurekAlert!
Further information:
http://www..ku.dk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>