Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A green future for scrap iron

05.11.2008
Researchers use zero valent iron to detoxify pollutants in industrial wastewater

Take a close look at that cheap piece of scrap iron before you toss it in the trash.

Wei-xian Zhang has a good use for it. Someday soon, much of the world might also.

Zhang, a professor of civil and environmental engineering, recently concluded a five-year research project in which he and his colleagues at Tongji University in Shanghai used two million pounds of iron to detoxify pollutants in industrial wastewater.

The project, carried out in Shanghai, was the largest in history to use iron in an environmental application. The iron, called zero valent iron (ZVI) because it is not oxidized, was obtained in the form of shavings or turnings from local metal-processing shops for less than 15 cents a pound.

An article written by Zhang and Luming Ma, professor of environmental engineering at Tongji University in Shanghai, was published recently as the cover article by Environmental Science and Technology. The article was titled ""Enhanced Biological Treatment of Industrial Wastewater with Bimetallic Zero-Valent Iron." ES&T, a bimonthly published by the American Chemical Society, is the leading journal of its kind.

The ZVI project began with small, "benchtop" experiments in the laboratory that used a total of 90 pounds of iron to treat toxins in solution. It graduated in 2005-06 to a pilot test using 2,000 pounds of iron to pretreat wastewater at a treatment plant in the Taopu Industrial District in Shanghai. Wastewater at the Taopu plant, which is generated by small chemical, materials and pharmaceutical companies, had previously been treated with microorganisms alone. ZVI augmented and improved this remediation method.

Following the pilot test, the Shanghai city government approved a grant to construct a full-scale treatment reactor in the Taopu district capable of processing almost 16 million gallons a day of wastewater. This ZVI reactor was connected to the biological treatment plant two years ago and has been in continuous use since. The system was recently certified by Shanghai's Municipal Environmental Protection Bureau.

The addition of ZVI to the traditional biological methods of wastewater treatment resulted in a significant improvement in pollutant levels, according to Ma, who directs the National Engineering Research Center for Urban Pollution Control in Tongji's College of Environmental Science and Engineering. The removal of biological oxygen demand (BOD) rose from 76 to 87 percent. Improvements were also recorded with the removals of nitrogen (13 to 85 percent), phosphorus (44 to 64 percent), and colors and dyes (52 to 80 percent).

"Before this project," says Ma, "few people believed scrap iron could work in a wastewater treatment plant. We have developed a copper-activated iron and used a systematic approach – from benchtop to pilot to full-scale tests – to show that ZVI-enhanced treatment can achieve dramatic improvements over biological processes used by themselves."

While biological methods, including biofilms and aerobic organisms, are effective at treating municipal wastewater, Zhang and Ma wrote in the ES&T article, they enjoy limited success in treating the less biodegradable and often toxic compounds in industrial wastewater, many of which are synthetic organic chemicals.

These chemicals are attracted to the surface of the iron, where they share electrons with the iron and are degraded and detoxified. The ZVI, which undergoes oxidation during this exchange, has a useful lifetime of about two years in the treatment process.

The ZVI scrap iron is chemically similar to iron-based nanoparticles invented by Zhang that are now widely used in North America to clean decontaminated soil and groundwater. The nanoparticles contain 99.9 percent iron and about .1 percent palladium or other Noble elements.

Zhang says the scrap iron's low cost gives it great potential to be used in developing countries where nanoparticles' cost – about $50 a pound – can be prohibitive. In China, Zhang and Ma note in their article, the textile industry alone generates two billion tons of wastewater each year.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>