Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A green future for scrap iron

05.11.2008
Researchers use zero valent iron to detoxify pollutants in industrial wastewater

Take a close look at that cheap piece of scrap iron before you toss it in the trash.

Wei-xian Zhang has a good use for it. Someday soon, much of the world might also.

Zhang, a professor of civil and environmental engineering, recently concluded a five-year research project in which he and his colleagues at Tongji University in Shanghai used two million pounds of iron to detoxify pollutants in industrial wastewater.

The project, carried out in Shanghai, was the largest in history to use iron in an environmental application. The iron, called zero valent iron (ZVI) because it is not oxidized, was obtained in the form of shavings or turnings from local metal-processing shops for less than 15 cents a pound.

An article written by Zhang and Luming Ma, professor of environmental engineering at Tongji University in Shanghai, was published recently as the cover article by Environmental Science and Technology. The article was titled ""Enhanced Biological Treatment of Industrial Wastewater with Bimetallic Zero-Valent Iron." ES&T, a bimonthly published by the American Chemical Society, is the leading journal of its kind.

The ZVI project began with small, "benchtop" experiments in the laboratory that used a total of 90 pounds of iron to treat toxins in solution. It graduated in 2005-06 to a pilot test using 2,000 pounds of iron to pretreat wastewater at a treatment plant in the Taopu Industrial District in Shanghai. Wastewater at the Taopu plant, which is generated by small chemical, materials and pharmaceutical companies, had previously been treated with microorganisms alone. ZVI augmented and improved this remediation method.

Following the pilot test, the Shanghai city government approved a grant to construct a full-scale treatment reactor in the Taopu district capable of processing almost 16 million gallons a day of wastewater. This ZVI reactor was connected to the biological treatment plant two years ago and has been in continuous use since. The system was recently certified by Shanghai's Municipal Environmental Protection Bureau.

The addition of ZVI to the traditional biological methods of wastewater treatment resulted in a significant improvement in pollutant levels, according to Ma, who directs the National Engineering Research Center for Urban Pollution Control in Tongji's College of Environmental Science and Engineering. The removal of biological oxygen demand (BOD) rose from 76 to 87 percent. Improvements were also recorded with the removals of nitrogen (13 to 85 percent), phosphorus (44 to 64 percent), and colors and dyes (52 to 80 percent).

"Before this project," says Ma, "few people believed scrap iron could work in a wastewater treatment plant. We have developed a copper-activated iron and used a systematic approach – from benchtop to pilot to full-scale tests – to show that ZVI-enhanced treatment can achieve dramatic improvements over biological processes used by themselves."

While biological methods, including biofilms and aerobic organisms, are effective at treating municipal wastewater, Zhang and Ma wrote in the ES&T article, they enjoy limited success in treating the less biodegradable and often toxic compounds in industrial wastewater, many of which are synthetic organic chemicals.

These chemicals are attracted to the surface of the iron, where they share electrons with the iron and are degraded and detoxified. The ZVI, which undergoes oxidation during this exchange, has a useful lifetime of about two years in the treatment process.

The ZVI scrap iron is chemically similar to iron-based nanoparticles invented by Zhang that are now widely used in North America to clean decontaminated soil and groundwater. The nanoparticles contain 99.9 percent iron and about .1 percent palladium or other Noble elements.

Zhang says the scrap iron's low cost gives it great potential to be used in developing countries where nanoparticles' cost – about $50 a pound – can be prohibitive. In China, Zhang and Ma note in their article, the textile industry alone generates two billion tons of wastewater each year.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>