Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A green future for scrap iron

05.11.2008
Researchers use zero valent iron to detoxify pollutants in industrial wastewater

Take a close look at that cheap piece of scrap iron before you toss it in the trash.

Wei-xian Zhang has a good use for it. Someday soon, much of the world might also.

Zhang, a professor of civil and environmental engineering, recently concluded a five-year research project in which he and his colleagues at Tongji University in Shanghai used two million pounds of iron to detoxify pollutants in industrial wastewater.

The project, carried out in Shanghai, was the largest in history to use iron in an environmental application. The iron, called zero valent iron (ZVI) because it is not oxidized, was obtained in the form of shavings or turnings from local metal-processing shops for less than 15 cents a pound.

An article written by Zhang and Luming Ma, professor of environmental engineering at Tongji University in Shanghai, was published recently as the cover article by Environmental Science and Technology. The article was titled ""Enhanced Biological Treatment of Industrial Wastewater with Bimetallic Zero-Valent Iron." ES&T, a bimonthly published by the American Chemical Society, is the leading journal of its kind.

The ZVI project began with small, "benchtop" experiments in the laboratory that used a total of 90 pounds of iron to treat toxins in solution. It graduated in 2005-06 to a pilot test using 2,000 pounds of iron to pretreat wastewater at a treatment plant in the Taopu Industrial District in Shanghai. Wastewater at the Taopu plant, which is generated by small chemical, materials and pharmaceutical companies, had previously been treated with microorganisms alone. ZVI augmented and improved this remediation method.

Following the pilot test, the Shanghai city government approved a grant to construct a full-scale treatment reactor in the Taopu district capable of processing almost 16 million gallons a day of wastewater. This ZVI reactor was connected to the biological treatment plant two years ago and has been in continuous use since. The system was recently certified by Shanghai's Municipal Environmental Protection Bureau.

The addition of ZVI to the traditional biological methods of wastewater treatment resulted in a significant improvement in pollutant levels, according to Ma, who directs the National Engineering Research Center for Urban Pollution Control in Tongji's College of Environmental Science and Engineering. The removal of biological oxygen demand (BOD) rose from 76 to 87 percent. Improvements were also recorded with the removals of nitrogen (13 to 85 percent), phosphorus (44 to 64 percent), and colors and dyes (52 to 80 percent).

"Before this project," says Ma, "few people believed scrap iron could work in a wastewater treatment plant. We have developed a copper-activated iron and used a systematic approach – from benchtop to pilot to full-scale tests – to show that ZVI-enhanced treatment can achieve dramatic improvements over biological processes used by themselves."

While biological methods, including biofilms and aerobic organisms, are effective at treating municipal wastewater, Zhang and Ma wrote in the ES&T article, they enjoy limited success in treating the less biodegradable and often toxic compounds in industrial wastewater, many of which are synthetic organic chemicals.

These chemicals are attracted to the surface of the iron, where they share electrons with the iron and are degraded and detoxified. The ZVI, which undergoes oxidation during this exchange, has a useful lifetime of about two years in the treatment process.

The ZVI scrap iron is chemically similar to iron-based nanoparticles invented by Zhang that are now widely used in North America to clean decontaminated soil and groundwater. The nanoparticles contain 99.9 percent iron and about .1 percent palladium or other Noble elements.

Zhang says the scrap iron's low cost gives it great potential to be used in developing countries where nanoparticles' cost – about $50 a pound – can be prohibitive. In China, Zhang and Ma note in their article, the textile industry alone generates two billion tons of wastewater each year.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>