Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A green future for scrap iron

05.11.2008
Researchers use zero valent iron to detoxify pollutants in industrial wastewater

Take a close look at that cheap piece of scrap iron before you toss it in the trash.

Wei-xian Zhang has a good use for it. Someday soon, much of the world might also.

Zhang, a professor of civil and environmental engineering, recently concluded a five-year research project in which he and his colleagues at Tongji University in Shanghai used two million pounds of iron to detoxify pollutants in industrial wastewater.

The project, carried out in Shanghai, was the largest in history to use iron in an environmental application. The iron, called zero valent iron (ZVI) because it is not oxidized, was obtained in the form of shavings or turnings from local metal-processing shops for less than 15 cents a pound.

An article written by Zhang and Luming Ma, professor of environmental engineering at Tongji University in Shanghai, was published recently as the cover article by Environmental Science and Technology. The article was titled ""Enhanced Biological Treatment of Industrial Wastewater with Bimetallic Zero-Valent Iron." ES&T, a bimonthly published by the American Chemical Society, is the leading journal of its kind.

The ZVI project began with small, "benchtop" experiments in the laboratory that used a total of 90 pounds of iron to treat toxins in solution. It graduated in 2005-06 to a pilot test using 2,000 pounds of iron to pretreat wastewater at a treatment plant in the Taopu Industrial District in Shanghai. Wastewater at the Taopu plant, which is generated by small chemical, materials and pharmaceutical companies, had previously been treated with microorganisms alone. ZVI augmented and improved this remediation method.

Following the pilot test, the Shanghai city government approved a grant to construct a full-scale treatment reactor in the Taopu district capable of processing almost 16 million gallons a day of wastewater. This ZVI reactor was connected to the biological treatment plant two years ago and has been in continuous use since. The system was recently certified by Shanghai's Municipal Environmental Protection Bureau.

The addition of ZVI to the traditional biological methods of wastewater treatment resulted in a significant improvement in pollutant levels, according to Ma, who directs the National Engineering Research Center for Urban Pollution Control in Tongji's College of Environmental Science and Engineering. The removal of biological oxygen demand (BOD) rose from 76 to 87 percent. Improvements were also recorded with the removals of nitrogen (13 to 85 percent), phosphorus (44 to 64 percent), and colors and dyes (52 to 80 percent).

"Before this project," says Ma, "few people believed scrap iron could work in a wastewater treatment plant. We have developed a copper-activated iron and used a systematic approach – from benchtop to pilot to full-scale tests – to show that ZVI-enhanced treatment can achieve dramatic improvements over biological processes used by themselves."

While biological methods, including biofilms and aerobic organisms, are effective at treating municipal wastewater, Zhang and Ma wrote in the ES&T article, they enjoy limited success in treating the less biodegradable and often toxic compounds in industrial wastewater, many of which are synthetic organic chemicals.

These chemicals are attracted to the surface of the iron, where they share electrons with the iron and are degraded and detoxified. The ZVI, which undergoes oxidation during this exchange, has a useful lifetime of about two years in the treatment process.

The ZVI scrap iron is chemically similar to iron-based nanoparticles invented by Zhang that are now widely used in North America to clean decontaminated soil and groundwater. The nanoparticles contain 99.9 percent iron and about .1 percent palladium or other Noble elements.

Zhang says the scrap iron's low cost gives it great potential to be used in developing countries where nanoparticles' cost – about $50 a pound – can be prohibitive. In China, Zhang and Ma note in their article, the textile industry alone generates two billion tons of wastewater each year.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>